Effect of green synthesis of Fe3O4 nanomaterial on the removal of cefixime from aqueous solution

被引:8
|
作者
Al-husseiny, Rasha A. [1 ]
Kareem, Sabreen L. [1 ]
Naje, Ahmed Samir [1 ]
Ebrahim, Shahlaa E. [2 ]
机构
[1] Al Qasim Green Univ, Coll Engn, Babylon, Iraq
[2] Univ Baghdad, Coll Engn, Environm Engn Dept, Baghdad, Iraq
关键词
Cefixime; Adsorption; Tangerine peel; Nanomaterials; Iron oxide; WASTE-WATER; ADSORPTION; EFFICIENT; OPTIMIZATION;
D O I
10.1007/s13399-023-03921-7
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, two types of iron oxide nanomaterial (Fe3O4) and nanocomposite (T-Fe3O4) were created from the bio-waste mass of tangerine peel. These two materials were utilized for adsorption tests to remove cefixime (CFX) from an aqueous solution. Before the adsorption application, both adsorbents have been characterized by various characterizations such as XRD, FTIR, VSM, TEM, and FESEM. The mesoporous nano-crystalline structure of Fe3O4 and T-Fe3O4 nanocomposite with less than 100-nm diameter is confirmed. The adsorption of the obtained adsorbents was evaluated for CFX removal by adjusting several operation parameters to optimize the removal. The optimal conditions for CFX removal were found to be an initial concentration of 40 and 50 mg/L, a dosage of 0.25 mg/50 mL, a contact time of 120 min, and a pH of 5. These settings resulted in q(e) max values of 41.322 and 56.49 mg g(-1) onto Fe3O4 and T-Fe3O4, respectively.
引用
收藏
页码:17277 / 17288
页数:12
相关论文
共 50 条
  • [1] Synthesis of Fe3O4/Alginate composite for dye removal from aqueous solution
    Minh, Vu Xuan
    Hanh, Le Thi My
    Lan, Pham Thi
    Bien, Tran Van
    Dung, Nguyen Tuan
    VIETNAM JOURNAL OF CHEMISTRY, 2020, 58 (02) : 185 - 190
  • [2] Synthesis of Fe3O4 nanoparticles with tunable sizes for the removal of Cr(VI) from aqueous solution
    Yibing Feng
    Yi Du
    Zhongtao Chen
    Minxing Du
    Kai Yang
    Xingjie Lv
    Zhongfu Li
    Journal of Coatings Technology and Research, 2018, 15 : 1145 - 1155
  • [3] Synthesis of Fe3O4 nanoparticles with tunable sizes for the removal of Cr(VI) from aqueous solution
    Feng, Yibing
    Du, Yi
    Chen, Zhongtao
    Du, Minxing
    Yang, Kai
    Lv, Xingjie
    Li, Zhongfu
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2018, 15 (05) : 1145 - 1155
  • [4] Fe3O4 Nanoparticles: Synthesis, Characterization and Application in Removal of Iron from Aqueous Solution and Groundwater
    Swelam, A. A.
    Awad, M. B.
    Gedamy, V. R.
    Tawfik, A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2019, 62 (05): : 1189 - 1209
  • [5] Synthesis of superparamagnetic Fe3O4 nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution
    Singh, K. K.
    Senapati, K. K.
    Sarma, K. C.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (03): : 2214 - 2221
  • [6] Fe3O4–β-cyclodextrin–Chitosan Bionanocomposite for Arsenic Removal from Aqueous Solution
    J. T. Tsiepe
    B. B. Mamba
    Alaa S. Inamuddin
    A. K. Abd-El-Aziz
    Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28 : 467 - 480
  • [7] Removal of As(V) from aqueous solution using modified Fe3O4 nanoparticles
    Zhao, Yuling
    Shi, Hao
    Du, Ze
    Zhou, Jinlong
    Yang, Fangyuan
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (01):
  • [8] Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite
    Bhaumik, Madhumita
    Leswifi, Taile Yvonne
    Maity, Arjun
    Srinivasu, V. V.
    Onyango, Maurice S.
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 186 (01) : 150 - 159
  • [9] Facile solvothermal synthesis of Fe3O4/bentonite for efficient removal of heavy metals from aqueous solution
    Yan, Liangguo
    Li, Shuang
    Yu, Haiqin
    Shan, Ranran
    Du, Bin
    Liu, Tiantian
    POWDER TECHNOLOGY, 2016, 301 : 632 - 640
  • [10] Synthesis of zeolite-A/Fe3O4/biochar composite for removal of Cr(VI) from aqueous solution
    Derbe, T.
    Zereffa, E. Amare
    Sani, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (16) : 10027 - 10046