Electrochemical Hydrogenation of Aliphatic Aldehydes and Acids using Pentlandite Catalysts

被引:3
作者
Kleinhaus, Julian T. [1 ]
Umer, Salman [1 ,2 ]
Pellumbi, Kevinjeorjios [1 ,2 ]
Wickert, Leon [1 ,2 ]
Wolf, Jonas [1 ,2 ]
Puring, Kai Junge [1 ,2 ]
Siegmund, Daniel [1 ,2 ]
Apfel, Ulf-Peter [1 ,2 ]
机构
[1] Ruhr Univ Bochum, Chair Inorgan Chem 1, Ind Electrochem, Univ Str 150, D-44801 Bochum, Germany
[2] Fraunhofer Inst Environm Safety & Energy Technol U, Dept Electrosynth, Osterfelder Str 3, D-46047 Oberhausen, Germany
关键词
Aldehyde; Carboxylic acid; Diol; Electrochemical hydrogenation; Pentlandite; ELECTROCATALYTIC HYDROGENATION; WATER DISSOCIATION; BIPOLAR MEMBRANES; LEVULINIC ACID; BENZOIC-ACID; REDUCTION; SELECTIVITY; HYDROGENOLYSIS; STORAGE;
D O I
10.1002/cite.202300151
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Electrochemical hydrogenations are considered a sustainable alternative to classical thermocatalytic processes prevalent in industrial conversions. Using a base metal sulfide of the pentlandite class, the hydrogenation of glutaraldehyde and propionic acid was investigated. While propionic acid could not be converted, glutaraldehyde was conveniently transformed to the semi- and fully hydrogenated products 5-hydroxypentanal and 1,5-pentanediol with a partial current density of up to 34 mA cm-2 and a Faraday efficiency of 34 %. Crucial factors for a stable and efficient reaction were found to be the use of an appropriate buffer, avoidance of low pH and the used membrane type. The reaction was implemented into a zero-gap cell reaching a single pass conversion of up to 22 %, underlining the potential for future application. The electrochemical hydrogenation of biomass-derived dialdehydes enables a sustainable route towards green alpha,omega-diols. Specifically, for glutaraldehyde, the influence of cell components and electrolyte on the efficiency of the reaction is exemplified and continuous operation in a scalable zero-gap electrolyzer demonstrated. image
引用
收藏
页码:598 / 606
页数:9
相关论文
共 60 条
[1]   Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review [J].
Akhade, Sneha A. ;
Singh, Nirala ;
Gutierrez, Oliver Y. ;
Lopez-Ruiz, Juan ;
Wang, Huamin ;
Holladay, Jamie D. ;
Liu, Yue ;
Karkamkar, Abhijeet ;
Weber, Robert S. ;
Padmaperuma, Asanga B. ;
Lee, Mal-Soon ;
Whyatt, Greg A. ;
Elliott, Michael ;
Holladay, Johnathan E. ;
Male, Jonathan L. ;
Lercher, Johannes A. ;
Rousseau, Roger ;
Glezakou, Vassiliki-Alexandra .
CHEMICAL REVIEWS, 2020, 120 (20) :11370-11419
[2]   Near-surface ion distribution and buffer effects during electrochemical reactions [J].
Auinger, Michael ;
Katsounaros, Ioannis ;
Meier, Josef C. ;
Klemm, Sebastian O. ;
Biedermann, P. Ulrich ;
Topalov, Angel A. ;
Rohwerder, Michael ;
Mayrhofer, Karl J. J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (36) :16384-16394
[3]   ELECTROCHEMICAL REDUCTION OF BENZOIC-ACID AT MERCURY AND LEAD ELECTRODES [J].
BARRADAS, RG ;
KUTOWY, O ;
SHOESMIT.DW .
ELECTROCHIMICA ACTA, 1974, 19 (02) :49-56
[4]   Water oxidation couples to electrocatalytic hydrogenation of carbonyl compounds and unsaturated carbon-carbon bonds by nickel [J].
Behrouzi, Leila ;
Zand, Zahra ;
Fotuhi, Mobina ;
Kaboudin, Babak ;
Najafpour, Mohammad Mahdi .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   Electro-organic Syntheses for Green Chemical Manufacturing [J].
Biddinger, Elizabeth J. ;
Modestino, Miguel A. .
ELECTROCHEMICAL SOCIETY INTERFACE, 2020, 29 (03) :45-49
[6]   Identification of More Benign Cathode Materials for the Electrochemical Reduction of Levulinic Acid to Valeric Acid [J].
Bisselink, Roel J. M. ;
Crockatt, Marc ;
Zijlstra, Martin ;
Bakker, Ivan J. ;
Goetheer, Earl ;
Slaghek, Ted M. ;
van Es, Daan S. .
CHEMELECTROCHEM, 2019, 6 (13) :3285-3290
[7]   Effect of Electrolyte Cations on Organic Electrosynthesis: The Case of Adiponitrile Electrochemical Production [J].
Blanco, Daniela E. ;
Atwi, Rasha ;
Sethuraman, Sandhya ;
Lasri, Anne ;
Morales, Julian ;
Rajput, Nav Nidhi ;
Modestino, Miguel A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (15)
[8]   Controlling Selectivity in the Electrocatalytic Hydrogenation of Adiponitrile through Electrolyte Design [J].
Blanco, Daniela E. ;
Dookhith, Aaliyah Z. ;
Modestino, Miguel A. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (24) :9027-9034
[9]   Electrochemical Reduction of the Carbonyl Functional Group: The Importance of Adsorption Geometry, Molecular Structure, and Electrode Surface Structure [J].
Bondue, Christoph J. ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (30) :12071-12078
[10]   A Combined Experimental and Theoretical Study on the Activity and Selectivity of the Electrocatalytic Hydrogenation of Aldehydes (vol 8, pg 7645, 2018) [J].
Cantu, David C. ;
Padmaperuma, Asanga B. ;
Manh-Thuong Nguyen ;
Akhader, Sneha A. ;
Yoon, Yeohoon ;
Wang, Yang-Gang ;
Lee, Mal-Soon ;
Glezakou, Vassiliki-Alexandra ;
Rousseau, Roger ;
Lilga, Michael A. .
ACS CATALYSIS, 2019, 9 (03) :1738-1738