Summation Formulas on Harmonic Numbers and Five Central Binomial Coefficients

被引:0
作者
Li, Chunli [1 ]
Chu, Wenchang [1 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Henan, Peoples R China
关键词
Riemann zeta function; harmonic number; central binomial coefficient; IDENTITIES; SERIES;
D O I
10.1134/S0001434623110627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By applying the "coefficient extraction method" to hypergeometric series, we establish several remarkable infinite series identities about harmonic numbers and five binomial coefficients, including three conjectured by Z.-W. Sun.
引用
收藏
页码:1306 / 1313
页数:8
相关论文
共 15 条
[1]  
Bailey WN., 1935, Generalized hypergeometric series
[2]   On some combinatorial identities and harmonic sums [J].
Batir, Necdet .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (07) :1695-1709
[3]  
Berggren L., 1997, Pi: A Source Book, DOI [10.1007/978-1-4757-2736-4, DOI 10.1007/978-1-4757-2736-4]
[4]  
Campbell J. M., 2021, The Australian Journal of Mathematical Analysis and Applications, V18, pArt. 15, 19 pp
[5]  
Chu WC, 1997, ACTA ARITH, V82, P103
[6]  
Chu WC, 2021, RAMANUJAN J, V55, P239, DOI 10.1007/s11139-020-00259-w
[7]  
Chu WC, 2014, MATH COMPUT, V83, P475
[8]  
Comtet L., 1974, ADV COMBINATORICS AR, DOI [https://doi.org/10.1007/978-94-010-2196-8, DOI 10.1007/978-94-010-2196-8]
[9]  
Graham RL., 1989, Concrete mathematics
[10]   Hypergeometric identities for 10 extended Ramanujan-type series [J].
Guillera, Jesus .
RAMANUJAN JOURNAL, 2008, 15 (02) :219-234