Non-equilibrium attractor for non-linear stochastic dynamics

被引:1
作者
Patron, A. [1 ]
Sanchez-Rey, B. [2 ]
Trizac, E. [3 ,4 ]
Prados, A. [1 ]
机构
[1] Univ Seville, Fıs Teor, Apartado Correos 1065, E-41080 Seville, Spain
[2] Univ Seville, Dept Fıs Aplicada 1, EPS, E-41011 Seville, Spain
[3] Univ Paris Saclay, LPTMS, CNRS, F-91405 Orsay, France
[4] Ecole Normale Super Lyon, F-69364 Lyon, France
关键词
H-THEOREM; PHASE-TRANSITIONS; LANGEVIN EQUATION; EQUILIBRIUM; SYSTEMS;
D O I
10.1209/0295-5075/ad1d70
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamical behaviour of mesoscopic systems in contact with a thermal bath, described either via a non -linear Langevin equation at the trajectory level -or the corresponding Fokker-Planck equation for the probability distribution function at the ensemble level. Our focus is put on one-dimensional -or d-dimensional isotropic-systems in confining potentials, with detailed balance-fluctuation-dissipation thus holds, and the stationary probability distribution has the canonical form at the bath temperature. When quenching the bath temperature to low enough values, a far-from-equilibrium state emerges that rules the dynamics over a characteristic intermediate timescale. Such a long-lived state has a Dirac-delta probability distribution function and attracts all solutions over this intermediate timescale, in which the initial conditions are immaterial while the influence of the bath is still negligible. Numerical evidence and qualitative physical arguments suggest that the above picture extends to higher-dimensional systems, with anisotropy and interactions. Copyright (C) 2024 EPLA
引用
收藏
页数:7
相关论文
共 50 条
[1]   Optimal Protocols and Optimal Transport in Stochastic Thermodynamics [J].
Aurell, Erik ;
Mejia-Monasterio, Carlos ;
Muratore-Ginanneschi, Paolo .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[2]  
BACHELIER L., 1900, ANN SCI ECOLE NORM S, V3, P21, DOI DOI 10.24033/ASENS.476
[3]   Influence of correlations on the velocity statistics of scalar granular gases [J].
Baldassarri, A ;
Marconi, UMB ;
Puglisi, A .
EUROPHYSICS LETTERS, 2002, 58 (01) :14-20
[4]   Derivation of a Langevin equation in a system with multiple scales: The case of negative temperatures [J].
Baldovin, Marco ;
Vulpiani, Angelo ;
Puglisi, Andrea ;
Prados, Antonio .
PHYSICAL REVIEW E, 2019, 99 (06)
[5]   Langevin equations from experimental data: The case of rotational diffusion in granular media [J].
Baldovin, Marco ;
Puglisi, Andrea ;
Vulpiani, Angelo .
PLOS ONE, 2019, 14 (02)
[6]   Langevin equation in systems with also negative temperatures [J].
Baldovin, Marco ;
Puglisi, Andrea ;
Vulpiani, Angelo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[7]   On the velocity distributions of the one-dimensional inelastic gas [J].
Barrat, A ;
Biben, T ;
Rácz, Z ;
Trizac, E ;
van Wijland, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (03) :463-480
[8]  
Bender C.M., 1999, ADV MATH METHODS SCI
[9]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[10]   H-theorem for electrostatic or self-gravitating Vlasov-Poisson-Fokker-Planck systems [J].
Bonilla, LL ;
Carrillo, JA ;
Soler, J .
PHYSICS LETTERS A, 1996, 212 (1-2) :55-59