Asymptotic behaviors of the integrated density of states for random Schrodinger operators associated with Gibbs point processes

被引:0
作者
Nakagawa, Yuta [1 ]
机构
[1] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2023年 / 28卷
关键词
random Schrodinger operator; density of states; Gibbs point process; EXISTENCE;
D O I
10.1214/23-EJP1054
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The asymptotic behaviors of the integrated density of states N(lambda) of Schrodinger operators with nonpositive potentials associated with Gibbs point processes are studied. It is shown that for some Gibbs point processes, the leading terms of N(lambda) as lambda down arrow -infinity coincide with that for a Poisson point process, which is known. Moreover, for some Gibbs point processes corresponding to pairwise interactions, the leading terms of N(lambda) as lambda down arrow -infinity are determined, which are different from that for a Poisson point process.
引用
收藏
页数:14
相关论文
共 16 条
  • [1] The spectrum of Schrodinger operators with Poisson type random potential
    Ando, K
    Iwatsuka, A
    Kaminaga, M
    Nakano, F
    [J]. ANNALES HENRI POINCARE, 2006, 7 (01): : 145 - 160
  • [2] CARMONA R, 1990, SPECTRAL THEORY RAND
  • [3] Existence of Gibbs point processes with stable infinite range interaction
    Dereudre, David
    Vasseur, Thibaut
    [J]. JOURNAL OF APPLIED PROBABILITY, 2020, 57 (03) : 775 - 791
  • [4] Introduction to the Theory of Gibbs Point Processes
    Dereudre, David
    [J]. STOCHASTIC GEOMETRY: MODERN RESEARCH FRONTIERS, 2019, 2237 : 181 - 229
  • [5] Existence of Gibbsian point processes with geometry-dependent interactions
    Dereudre, David
    Drouilhet, Remy
    Georgii, Hans-Otto
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (3-4) : 643 - 670
  • [6] ASYMPTOTICS FOR WIENER SAUSAGE
    DONSKER, MD
    VARADHAN, SRS
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (04) : 525 - 565
  • [7] Stochastic comparison of point random fields
    Georgii, HO
    Kuneth, T
    [J]. JOURNAL OF APPLIED PROBABILITY, 1997, 34 (04) : 868 - 881
  • [8] Disagreement percolation for Gibbs ball models
    Hofer-Temmel, Christoph
    Houdebert, Pierre
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 3922 - 3940
  • [9] Lifshitz tails for random Schrodinger operators with negative singular Poisson potential
    Klopp, F
    Pastur, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) : 57 - 103
  • [10] Nakao S., 1977, JAPAN J MATH, V3, P111