Enhanced electrical and magnetic properties of (Co, Yb) co-doped ZnO memristor for neuromorphic computing

被引:18
作者
Elboughdiri, Noureddine [1 ,2 ]
Iqbal, Shahid [3 ]
Abdullaev, Sherzod [4 ,5 ]
Aljohani, Mohammed [7 ]
Safeen, Akif [6 ]
Althubeiti, Khaled [7 ]
Khan, Rajwali [8 ,9 ]
机构
[1] Univ Hail, Coll Engn, Chem Engn Dept, POB 2440, Hail 81441, Saudi Arabia
[2] Univ Gabes, Natl Sch Engineers Gabes, Chem Engn Proc Dept, Gabes 6029, Tunisia
[3] Univ Wisconsin, Dept Phys, La Crosse, WI 54601 USA
[4] Cent Asian Univ, Engn Sch, Tashkent, Uzbekistan
[5] Tashkent State Pedag Univ, Sci & Innovat Dept, Tashkent, Uzbekistan
[6] Univ Poonch Rawalakot, Dept Phys, Rawalakot 12350, Pakistan
[7] Taif Univ, Coll Sci, Dept Chem, POB 110, Taif 21944, Saudi Arabia
[8] Univ Lakki Marwat, Dept Phys, Lakki Marwat 2842, KP, Pakistan
[9] United Arab Emirates Univ, Dept Phys, Al Ain, U Arab Emirates
关键词
Cobalt - Electrodes - Grain boundaries - II-VI semiconductors - Memristors - Room temperature - Synthesis (chemical) - ZnO nanoparticles;
D O I
10.1039/d3ra06853f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the morphological, electrical, magnetic, and resistive switching properties of (Co, Yb) co-ZnO for neuromorphic computing. By using hydrothermal synthesized nanoparticles and their corresponding sputtering target, we introduce Co and Yb into the ZnO structure, leading to increased oxygen vacancies and grain volume, indicating grain growth. This growth reduces grain boundaries, enhancing electrical conductivity and room-temperature ferromagnetism in Co and Yb-doped ZnO nanoparticles. We present a sputter-grown memristor with a (Co, Yb) co-ZnO layer between Au electrodes. Characterization confirms the ZnO layer's presence and 100 nm-thick Au electrodes. The memristor exhibits repeatable analog resistance switching, allowing manipulation of conductance between low and high resistance states. Statistical endurance tests show stable resistive switching with minimal dispersion over 100 pulse cycles at room temperature. Retention properties of the current states are maintained for up to 1000 seconds, demonstrating excellent thermal stability. A physical model explains the switching mechanism, involving Au ion migration during "set" and filament disruption during "reset." Current-voltage curves suggest space-charge limited current, emphasizing conductive filament formation. All these results shows good electronic devices and systems towards neuromorphic computing. Functional comparison between a biological synapse and a memristor.
引用
收藏
页码:35993 / 36008
页数:16
相关论文
共 56 条
[1]   Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis [J].
Ahmad, M. ;
Ahmed, E. ;
Zhang, Yuewei ;
Khalid, N. R. ;
Xu, Jianfeng ;
Ullah, M. ;
Hong, Zhanglian .
CURRENT APPLIED PHYSICS, 2013, 13 (04) :697-704
[2]   Nanomaterials as a sustainable choice for treating wastewater [J].
Ahmed, Shams Forruque ;
Mofijur, M. ;
Ahmed, Bushra ;
Mehnaz, Tabassum ;
Mehejabin, Fatema ;
Maliat, Daina ;
Hoang, Anh Tuan ;
Shafiullah, G. M. .
ENVIRONMENTAL RESEARCH, 2022, 214
[3]   Modern Artificial Neural Networks: Is Evolution Cleverer? [J].
Bahmer, Andreas ;
Gupta, Daya ;
Effenberger, Felix .
NEURAL COMPUTATION, 2023, 35 (05) :763-806
[4]   Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al [J].
Belkhaoui, Chedia ;
Mzabi, Nissaf ;
Smaoui, Hichem ;
Daniel, Philippe .
RESULTS IN PHYSICS, 2019, 12 :1686-1696
[5]   Roadmap on emerging hardware and technology for machine learning [J].
Berggren, Karl ;
Xia, Qiangfei ;
Likharev, Konstantin K. ;
Strukov, Dmitri B. ;
Jiang, Hao ;
Mikolajick, Thomas ;
Querlioz, Damien ;
Salinga, Martin ;
Erickson, John R. ;
Pi, Shuang ;
Xiong, Feng ;
Lin, Peng ;
Li, Can ;
Chen, Yu ;
Xiong, Shisheng ;
Hoskins, Brian D. ;
Daniels, Matthew W. ;
Madhavan, Advait ;
Liddle, James A. ;
McClelland, Jabez J. ;
Yang, Yuchao ;
Rupp, Jennifer ;
Nonnenmann, Stephen S. ;
Cheng, Kwang-Ting ;
Gong, Nanbo ;
Lastras-Montano, Miguel Angel ;
Talin, A. Alec ;
Salleo, Alberto ;
Shastri, Bhavin J. ;
de Lima, Thomas Ferreira ;
Prucnal, Paul ;
Tait, Alexander N. ;
Shen, Yichen ;
Meng, Huaiyu ;
Roques-Carmes, Charles ;
Cheng, Zengguang ;
Bhaskaran, Harish ;
Jariwala, Deep ;
Wang, Han ;
Shainline, Jeffrey M. ;
Segall, Kenneth ;
Yang, J. Joshua ;
Roy, Kaushik ;
Datta, Suman ;
Raychowdhury, Arijit .
NANOTECHNOLOGY, 2021, 32 (01)
[6]   Conductive Polymer-Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces [J].
Bettucci, Ottavia ;
Matrone, Giovanni Maria ;
Santoro, Francesca .
ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (02)
[7]   Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing [J].
Bian, Hongyu ;
Goh, Yi Yiing ;
Liu, Yuxia ;
Ling, Haifeng ;
Xie, Linghai ;
Liu, Xiaogang .
ADVANCED MATERIALS, 2021, 33 (46)
[8]   DEPENDENCE OF ENERGY-GAP ON X AND T IN ZN1-XMNXSE - THE ROLE OF EXCHANGE INTERACTION [J].
BYLSMA, RB ;
BECKER, WM ;
KOSSUT, J ;
DEBSKA, U ;
YODERSHORT, D .
PHYSICAL REVIEW B, 1986, 33 (12) :8207-8215
[9]   Conductive-bridging random-access memories for emerging neuromorphic computing [J].
Cha, Jun-Hwe ;
Yang, Sang Yoon ;
Oh, Jungyeop ;
Choi, Shinhyun ;
Park, Sangsu ;
Jang, Byung Chul ;
Ahn, Wonbae ;
Choi, Sung-Yool .
NANOSCALE, 2020, 12 (27) :14339-14368
[10]   A comprehensive review on recent advancements in d0 ferromagnetic oxide materials [J].
Chouhan, L. ;
Srivastava, S. K. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 147