Predicted leukocyte telomere length and risk of myeloid neoplasms

被引:5
作者
Sullivan, Shannon M. [1 ,2 ]
Cole, Ben [2 ]
Lane, John [2 ]
Meredith, John J. [2 ]
Langer, Erica [1 ]
Hooten, Anthony J. [1 ]
Roesler, Michelle [1 ]
McGraw, Kathy L. [3 ]
Pankratz, Nathan [2 ]
Poynter, Jenny N. [1 ,4 ,5 ]
机构
[1] Univ Minnesota, Div Pediat Epidemiol & Clin Res, Dept Pediat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Lab Med & Pathol, Minneapolis, MN 55455 USA
[3] NCI, Lab Receptor Biol & Gene Express, NIH, Bethesda, MD 20892 USA
[4] Univ Minnesota, Masonic Canc Ctr, Minneapolis, MN 55455 USA
[5] Univ Minnesota, Div Pediat Epidemiol & Clin Res, 420 Delaware St SE MMC 715, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
WORLD-HEALTH-ORGANIZATION; MENDELIAN RANDOMIZATION; MYELODYSPLASTIC SYNDROMES; GENETIC-VARIATION; CANCER-RISK; ASSOCIATION; LEUKEMIA; VARIANTS; HALLMARKS; DISEASE;
D O I
10.1093/hmg/ddad126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Maintenance of telomere length has long been established to play a role in the biology of cancer and several studies suggest that it may be especially important in myeloid malignancies. To overcome potential bias in confounding and reverse causation of observational studies, we use both a polygenic risk score (PRS) and inverse-variance weighted (IVW) Mendelian randomization (MR) analyses to estimate the relationship between genetically predicted leukocyte telomere length (LTL) and acute myeloid leukemia (AML) risk in 498 cases and 2099 controls and myelodysplastic syndrome (MDS) risk in 610 cases and 1759 controls. Genetic instruments derived from four recent studies explaining 1.23-4.57% of telomere variability were considered. We used multivariable logistic regression to estimate odds ratios (OR, 95% confidence intervals [CI]) as the measure of association between individual single-nucleotide polymorphisms and myeloid malignancies. We observed a significant association between a PRS of longer predicted LTL and AML using three genetic instruments (OR = 4.03 per similar to 1200 base pair [bp] increase in LTL, 95% CI: 1.65, 9.85 using Codd et al. [Codd, V., Nelson, C.P., Albrecht, E., Mangino, M., Deelen, J., Buxton, J.L., Hottenga, J.J., Fischer, K., Esko, T., Surakka, I. et al. (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet., 45, 422-427 427e421-422.], OR = 3.48 per one-standard deviation increase in LTL, 95% CI: 1.74, 6.97 using Li et al. [Li, C., Stoma, S., Lotta, L.A., Warner, S., Albrecht, E., Allione, A., Arp, P.P., Broer, L., Buxton, J.L., Alves, A.D.S.C. et al. (2020) Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am. J. Hum. Genet., 106, 389-404.] and OR = 2.59 per 1000 bp increase in LTL, 95% CI: 1.03, 6.52 using Taub et al. [Taub, M.A., Conomos, M.P., Keener, R., Iyer, K.R., Weinstock, J.S., Yanek, L.R., Lane, J., Miller-Fleming, T.W., Brody, J.A., Raffield, L.M. et al. (2022) Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genom., 2.] genetic instruments). MR analyses further indicated an association between LTL and AML risk (P-IVW <= 0.049) but not MDS (all P-IVW >= 0.076). Findings suggest variation in genes relevant to telomere function and maintenance may be important in the etiology of AML but not MDS.
引用
收藏
页码:2996 / 3005
页数:10
相关论文
共 93 条
  • [1] The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
    Arber, Daniel A.
    Orazi, Attilio
    Hasserjian, Robert
    Thiele, Jurgen
    Borowitz, Michael J.
    Le Beau, Michelle M.
    Bloomfield, Clara D.
    Cazzola, Mario
    Vardiman, James W.
    [J]. BLOOD, 2016, 127 (20) : 2391 - 2405
  • [2] The Role of Telomeres in Human Disease
    Armanios, Mary
    [J]. ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2022, 23 : 363 - 381
  • [3] Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis
    Astuti, Yuliana
    Wardhana, Ardyan
    Watkins, Johnathan
    Wulaningsih, Wahyu
    [J]. ENVIRONMENTAL RESEARCH, 2017, 158 : 480 - 489
  • [4] Telomeres and aging
    Aubert, Geraldine
    Lansdorp, Peter M.
    [J]. PHYSIOLOGICAL REVIEWS, 2008, 88 (02) : 557 - 579
  • [5] Mechanisms of telomeric instability
    Baird, D. M.
    [J]. CYTOGENETIC AND GENOME RESEARCH, 2008, 122 (3-4) : 308 - 314
  • [6] Telomere dynamics in human cells
    Baird, Duncan M.
    [J]. BIOCHIMIE, 2008, 90 (01) : 116 - 121
  • [7] Telomere length and common disease: study design and analytical challenges
    Barrett, Jennifer H.
    Iles, Mark M.
    Dunning, Alison M.
    Pooley, Karen A.
    [J]. HUMAN GENETICS, 2015, 134 (07) : 679 - 689
  • [8] Telomeres and human disease: Ageing, cancer and beyond
    Blasco, MA
    [J]. NATURE REVIEWS GENETICS, 2005, 6 (08) : 611 - 622
  • [9] Telomeres and human health
    Bojesen, S. E.
    [J]. JOURNAL OF INTERNAL MEDICINE, 2013, 274 (05) : 399 - 413
  • [10] Boultwood J, 1997, AM J HEMATOL, V56, P266