The origin of overpotential in lithium-mediated nitrogen reduction

被引:12
作者
Westhead, O. [1 ]
Tort, R. [2 ]
Spry, M. [1 ]
Rietbrock, J. [1 ]
Jervis, R. [3 ]
Grimaud, A. [4 ,5 ,6 ]
Bagger, A. [2 ]
Stephens, I. E. L. [1 ]
机构
[1] Imperial Coll London, Dept Mat, London, England
[2] Imperial Coll London, Dept Chem Engn, London, England
[3] UCL, Dept Chem Engn, Electrochem Innovat Lab, London, England
[4] Coll France, Solid State Chem & Energy Lab, UMR8260, CNRS, Paris, France
[5] CNRS FR 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens 1, France
[6] Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA USA
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
ELECTROCHEMICAL REDUCTION; OXIDATION POTENTIALS; COUPLING STRENGTH; AMMONIA-SYNTHESIS; N-2; REDUCTION; THERMODYNAMICS; ELECTRODE; EFFICIENCY; N2;
D O I
10.1039/d2fd00156j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The verification of the lithium-mediated nitrogen reduction system in 2019 has led to an explosion in the literature focussing on improving the metrics of faradaic efficiency, stability, and activity. However, while the literature acknowledges the vast intrinsic overpotential for nitrogen reduction due to the reliance on in situ lithium plating, it has thus far been difficult to accurately quantify this overpotential and effectively analyse further voltage losses. In this work, we present a simple method for determining the Reversible Hydrogen Electrode (RHE) potential in the lithium-mediated nitrogen reduction system. This method allows for an investigation of the Nernst equation and reveals sources of potential losses. These are namely the solvation of the lithium ion in the electrolyte and resistive losses due to the formation of the solid electrolyte interphase. The minimum observed overpotential was achieved in a 0.6 M LiClO4, 0.5 vol% ethanol in tetrahydrofuran electrolyte. This was -3.59 +/- 0.07 V vs. RHE, with a measured faradaic efficiency of 6.5 +/- 0.2%. Our method allows for easy comparison between the lithium-mediated system and other nitrogen reduction paradigms, including biological and homogeneous mechanisms.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 46 条
[1]   Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction [J].
Andersen, Suzanne Z. ;
Statt, Michael J. ;
Bukas, Vanessa J. ;
Shapel, Sarah G. ;
Pedersen, Jakob B. ;
Krempl, Kevin ;
Saccoccio, Mattia ;
Chakraborty, Debasish ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Norskov, Jens ;
Chorkendorff, Ib .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :4291-4300
[2]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[3]   Role of Catalyst in Controlling N2 Reduction Selectivity: A Unified View of Nitrogenase and Solid Electrodes [J].
Bagger, Alexander ;
Wan, Hao ;
Stephens, Ifan E. L. ;
Rossmeisl, Jan .
ACS CATALYSIS, 2021, 11 (11) :6596-6601
[4]   THE ELECTROCHEMICAL-BEHAVIOR OF TETRAHYDROFURAN AND PROPYLENE CARBONATE WITHOUT ADDED ELECTROLYTE [J].
CAMPBELL, SA ;
BOWES, C ;
MCMILLAN, RS .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 284 (01) :195-204
[5]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[6]   The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes [J].
Colmati, Flavio ;
Tremiliosi-Filho, Germano ;
Gonzalez, Ernesto R. ;
Berna, Antonio ;
Herrero, Enrique ;
Feliu, Juan M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (40) :9114-9123
[7]   Toward the understanding of water-in-salt electrolytes: Individual ion activities and liquid junction potentials in highly concentrated aqueous solutions [J].
Degoulange, Damien ;
Dubouis, Nicolas ;
Grimaud, Alexis .
JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (06)
[8]   Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency [J].
Du, Hoang-Long ;
Chatti, Manjunath ;
Hodgetts, Rebecca Y. ;
Cherepanov, Pavel, V ;
Nguyen, Cuong K. ;
Matuszek, Karolina ;
MacFarlane, Douglas R. ;
Simonov, Alexandr N. .
NATURE, 2022, 609 (7928) :722-+
[9]  
Elder S. H., 1993, CHEM MATER, V5, P1545, DOI [DOI 10.1021/CM00034A027, 10.1021/cm00034a027]
[10]   Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation [J].
Fu, Xianbiao ;
Pedersen, Jakob B. ;
Zhou, Yuanyuan ;
Saccoccio, Mattia ;
Li, Shaofeng ;
Salinas, Rokas ;
Li, Katja ;
Andersen, Suzanne Z. ;
Xu, Aoni ;
Deissler, Niklas H. ;
Mygind, Jon Bjarke Valbaek ;
Wei, Chao ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
SCIENCE, 2023, 379 (6633) :707-712