TP-Net: Two-Path Network for Retinal Vessel Segmentation

被引:25
作者
Qu, Zhiwei [1 ]
Zhuo, Li [1 ]
Cao, Jie [1 ]
Li, Xiaoguang [1 ]
Yin, Hongxia [2 ]
Wang, Zhenchang [2 ]
机构
[1] Beiing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing 100050, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Retinal vessels; Image segmentation; Feature extraction; Task analysis; Image edge detection; Biomedical imaging; Visualization; Retinal vessel segmentation; edge detection; global feature selection; multi-scale feature aggregation; BLOOD-VESSELS; U-NET; IMAGES; CHALLENGES; TAXONOMY;
D O I
10.1109/JBHI.2023.3237704
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Refined and automatic retinal vessel segmentation is crucial for computer-aided early diagnosis of retinopathy. However, existing methods often suffer from mis-segmentation when dealing with thin and low-contrast vessels. In this paper, a two-path retinal vessel segmentation network is proposed, namely TP-Net, which consists of three core parts, i.e., main-path, sub-path, and multi-scale feature aggregation module (MFAM). Main-path is to detect the trunk area of the retinal vessels, and the sub-path to effectively capture edge information of the retinal vessels. The prediction results of the two paths are combined by MFAM, obtaining refined segmentation of retinal vessels. In the main-path, a three-layer lightweight backbone network is elaborately designed according to the characteristics of retinal vessels, and then a global feature selection mechanism (GFSM) is proposed, which can autonomously select features that are more important for the segmentation task from the features at different layers of the network, thereby, enhancing the segmentation capability for low-contrast vessels. In the sub-path, an edge feature extraction method and an edge loss function are proposed, which can enhance the ability of the network to capture edge information and reduce the mis-segmentation of thin vessels. Finally, MFAM is proposed to fuse the prediction results of main-path and sub-path, which can remove background noises while preserving edge details, and thus, obtaining refined segmentation of retinal vessels. The proposed TP-Net has been evaluated on three public retinal vessel datasets, namely DRIVE, STARE, and CHASE DB1. The experimental results show that the TP-Net achieved a superior performance and generalization ability with fewer model parameters compared with the state-of-the-art methods.
引用
收藏
页码:1979 / 1990
页数:12
相关论文
共 46 条
[1]   Biologically-Inspired Supervised Vasculature Segmentation in SLO Retinal Fundus Images [J].
Abbasi-Sureshjani, Samaneh ;
Smit-Ockeloen, Iris ;
Zhang, Jiong ;
Romeny, Bart Ter Haar .
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2015), 2015, 9164 :325-334
[2]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[3]   A note about 'on replenishment schedule for deteriorating items with time-proportional demand' [J].
Caliskan, Cenk .
PRODUCTION PLANNING & CONTROL, 2021, 32 (13) :1158-1161
[4]   Retinal Vessel Segmentation Using Deep Learning: A Review [J].
Chen, Chunhui ;
Chuah, Joon Huang ;
Ali, Raza ;
Wang, Yizhou .
IEEE ACCESS, 2021, 9 :111985-112004
[5]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[6]   A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model [J].
Gegundez-Arias, Manuel E. ;
Marin-Santos, Diego ;
Perez-Borrero, Isaac ;
Vasallo-Vazquez, Manuel J. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 205
[7]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J].
Hoover, A ;
Kouznetsova, V ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (03) :203-210
[10]  
Huang HM, 2020, INT CONF ACOUST SPEE, P1055, DOI [10.1109/ICASSP40776.2020.9053405, 10.1109/icassp40776.2020.9053405]