Unsupervised multimodal domain adversarial network for time series classification

被引:9
作者
Xi, Liang [1 ]
Liang, Yujia [1 ]
Huang, Xunhua [1 ]
Liu, Han [1 ]
Li, Ao [1 ]
机构
[1] Harbin Univ Sci & Technol, 52 Xuefu Rd, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Time series classification; Transfer learning; Unsupervised domain adaption; Multimodal; Domain adversarial network; Joint maximum mean discrepancy;
D O I
10.1016/j.ins.2022.12.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised Domain Adaptation (UDA) is an ideal transfer learning method, which can use labeled source data to improve the classification performance of unlabeled target data. At present, the UDA methods for Time Series Classification (TSC) only use time-domain data or frequency-domain data as the input, and ignore fusing them, resulting in insuffi-cient feature extraction and inaccurate source-target distribution alignment. Therefore, we propose an unsupervised Multimodal Domain Adversarial Network (MDAN) for TSC tasks. Specifically, we adopt two feature extractors for the time-domain and frequency -domain feature representations, and employ-three classifiers to perform TSC of source data for training the two feature extractors; Then, we fuse the time-domain and frequency -domain feature representations of source and target data, respectively, input them into the unified domain discriminator for unsupervised multimodal domain adversarial learn-ing, and combine the proposed Time-Frequency-domain Joint Maximum Mean Discrepancy (TF-JMMD) to accurately align the source-target distributions; Finally, we select CNN or ResNet18 as the feature extractors to carry out comprehensive experiments, and the results demonstrate the SOTA performance of MDAN.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 42 条
[31]  
Shao S., Mechanical Dataset
[32]   Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning [J].
Shao, Siyu ;
McAleer, Stephen ;
Yan, Ruqiang ;
Baldi, Pierre .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) :2446-2455
[33]  
[苏卫星 Su Weixing], 2014, [计算机研究与发展, Journal of Computer Research and Development], V51, P781
[34]   Deep CORAL: Correlation Alignment for Deep Domain Adaptation [J].
Sun, Baochen ;
Saenko, Kate .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 :443-450
[35]   Technology investigation on time series classification and prediction [J].
Tong, Yuerong ;
Liu, Jingyi ;
Yu, Lina ;
Zhang, Liping ;
Sun, Linjun ;
Li, Weijun ;
Ning, Xin ;
Xu, Jian ;
Qin, Hong ;
Cai, Qiang .
PEERJ COMPUTER SCIENCE, 2022, 8
[36]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[37]   Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors [J].
Wang, Ming ;
Yan, Zheng ;
Wang, Ting ;
Cai, Pingqiang ;
Gao, Siyu ;
Zeng, Yi ;
Wan, Changjin ;
Wang, Hong ;
Pan, Liang ;
Yu, Jiancan ;
Pan, Shaowu ;
He, Ke ;
Lu, Jie ;
Chen, Xiaodong .
NATURE ELECTRONICS, 2020, 3 (09) :563-+
[38]  
Wang ZG, 2017, IEEE IJCNN, P1578, DOI 10.1109/IJCNN.2017.7966039
[39]   Early classification on time series [J].
Xing, Zhengzheng ;
Pei, Jian ;
Yu, Philip S. .
KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (01) :105-127
[40]   A comprehensive review on GANs for time-series signals [J].
Zhang, Da ;
Ma, Ming ;
Xia, Likun .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (05) :3551-3571