Unsupervised multimodal domain adversarial network for time series classification

被引:9
作者
Xi, Liang [1 ]
Liang, Yujia [1 ]
Huang, Xunhua [1 ]
Liu, Han [1 ]
Li, Ao [1 ]
机构
[1] Harbin Univ Sci & Technol, 52 Xuefu Rd, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Time series classification; Transfer learning; Unsupervised domain adaption; Multimodal; Domain adversarial network; Joint maximum mean discrepancy;
D O I
10.1016/j.ins.2022.12.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised Domain Adaptation (UDA) is an ideal transfer learning method, which can use labeled source data to improve the classification performance of unlabeled target data. At present, the UDA methods for Time Series Classification (TSC) only use time-domain data or frequency-domain data as the input, and ignore fusing them, resulting in insuffi-cient feature extraction and inaccurate source-target distribution alignment. Therefore, we propose an unsupervised Multimodal Domain Adversarial Network (MDAN) for TSC tasks. Specifically, we adopt two feature extractors for the time-domain and frequency -domain feature representations, and employ-three classifiers to perform TSC of source data for training the two feature extractors; Then, we fuse the time-domain and frequency -domain feature representations of source and target data, respectively, input them into the unified domain discriminator for unsupervised multimodal domain adversarial learn-ing, and combine the proposed Time-Frequency-domain Joint Maximum Mean Discrepancy (TF-JMMD) to accurately align the source-target distributions; Finally, we select CNN or ResNet18 as the feature extractors to carry out comprehensive experiments, and the results demonstrate the SOTA performance of MDAN.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 42 条
[1]   Deep image compression with lifting scheme: Wavelet transform domain based on high-frequency subband prediction [J].
Anju, M., I ;
Mohan, J. .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (03) :2163-2187
[2]  
Ben-David S., 2006, Analysis of representations for domain adaptation, Adv. Neural Inf. Process. Syst., P1, DOI DOI 10.7551/MITPRESS/7503.003.0022
[3]   A theory of learning from different domains [J].
Ben-David, Shai ;
Blitzer, John ;
Crammer, Koby ;
Kulesza, Alex ;
Pereira, Fernando ;
Vaughan, Jennifer Wortman .
MACHINE LEARNING, 2010, 79 (1-2) :151-175
[4]   Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy [J].
Bruzzone, Lorenzo ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) :770-787
[5]   Domain-adaptive intelligence for fault diagnosis based on deep transfer learning from scientific test rigs to industrial applications [J].
Cao, Xincheng ;
Wang, Yu ;
Chen, Binqiang ;
Zeng, Nianyin .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09) :4483-4499
[6]  
Devaraj D, 2007, ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, P335
[7]   Time-Series Data Mining [J].
Esling, Philippe ;
Agon, Carlos .
ACM COMPUTING SURVEYS, 2012, 45 (01)
[8]   Deep learning for time series classification: a review [J].
Fawaz, Hassan Ismail ;
Forestier, Germain ;
Weber, Jonathan ;
Idoumghar, Lhassane ;
Muller, Pierre-Alain .
DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) :917-963
[9]  
Ganin Y, 2016, J MACH LEARN RES, V17
[10]   Time series forecasting based on echo state network and empirical wavelet transformation [J].
Gao, Ruobin ;
Du, Liang ;
Duru, Okan ;
Yuen, Kum Fai .
APPLIED SOFT COMPUTING, 2021, 102 (102)