Resolving subcategories and dimensions in recollements of extriangulated categories

被引:2
作者
Ma, Xin [1 ]
Zhao, Tiwei [2 ]
Zhuang, Xin [1 ]
机构
[1] Henan Univ Engn, Coll Sci, Zhengzhou 451191, Peoples R China
[2] Qufu Normal Univ, Sch Math Sciences, Qufu 273165, Peoples R China
关键词
Extriangulated category; Recollement; Resolving subcategory; Resolution dimension; HOMOLOGICAL DIMENSIONS;
D O I
10.1007/s40840-022-01425-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Wang, Wei and Zhang introduced the notion of recollements of extriangulated categories. In this paper, let (A,B,C) be a recollement of extriangulated categories. We provide some methods to construct resolving subcategories involved in a recollement and study how they are related. As applications of the Auslander-Reiten correspondence, we get the gluing of cotilting modules in a recollement of module categories for artin algebras. We also give some bounds of resolution dimensions of the categories involved in (A,B,C) with respect to resolving subcategories, which generalize some known results.
引用
收藏
页数:24
相关论文
共 34 条
[1]  
AUSLANDE.M, 1969, MEM AM MATH SOC, P1
[2]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[3]  
BEILINSON AA, 1982, ASTERISQUE, P7
[4]   Relative homological algebra and purity in triangulated categories [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2000, 227 (01) :268-361
[5]   Transport of structure in higher homological algebra [J].
Bennett-Tennenhaus, Raphael ;
Shah, Amit .
JOURNAL OF ALGEBRA, 2021, 574 :514-549
[6]   Exact categories [J].
Buehler, Theo .
EXPOSITIONES MATHEMATICAE, 2010, 28 (01) :1-69
[7]  
Franjou V., 2004, Doc. Math., V9, P41
[8]  
Gorsky M, 2021, Arxiv, DOI arXiv:2103.12482
[9]  
Gu WL, 2021, Arxiv, DOI arXiv:2104.06042
[10]   Torsion pairs and recollements of extriangulated categories [J].
He, Jian ;
Hu, Yonggang ;
Zhou, Panyue .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) :2018-2036