UPPER BOUND FOR THE GRAND CANONICAL FREE ENERGY OF THE BOSE GAS IN THE GROSS-PITAEVSKII LIMIT

被引:5
作者
Boccato, Chiara [1 ]
Deuchert, Andreas [2 ]
Stocker, David [2 ]
机构
[1] Univ Milan, Inst Math, I-20133 Milan, Italy
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
mathematical physics; quantum mechanics; quantum statistical mechanics; calculus of variations; GROUND-STATE ENERGY; EINSTEIN CONDENSATION; HARD SPHERES; DILUTE; BOSONS; SYSTEM;
D O I
10.1137/23M1580930
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a homogeneous Bose gas in the Gross-Pitaevskii limit at temperatures that are comparable to the critical temperature for Bose-Einstein condensation in the ideal gas. Our main result is an upper bound for the grand canonical free energy in terms of two new contributions: (a) The free energy of the interacting condensate is given in terms of an effective theory describing its particle number fluctuations, and (b) the free energy of the thermally excited particles equals that of a temperature-dependent Bogoliubov Hamiltonian.
引用
收藏
页码:2611 / 2660
页数:50
相关论文
共 35 条
[31]   Rogue waves for a (2+1)-dimensional Gross-Pitaevskii equation with time-varying trapping potential in the Bose-Einstein condensate [J].
Wu, Xiao-Yu ;
Tian, Bo ;
Qu, Qi-Xing ;
Yuan, Yu-Qiang ;
Du, Xia-Xia .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) :1023-1030
[32]   Quadrupole oscillations in Bose-Fermi mixtures of ultracold atomic gases made of Yb atoms in the time-dependent Gross-Pitaevskii and Vlasov equations [J].
Maruyama, Tomoyuki ;
Yabu, Hiroyuki .
PHYSICAL REVIEW A, 2009, 80 (04)
[33]   Grand Canonical Versus Canonical Ensemble: Universal Structure of Statistics and Thermodynamics in a Critical Region of Bose-Einstein Condensation of an Ideal Gas in Arbitrary Trap [J].
Tarasov, S. V. ;
Kocharovsky, Vl. V. ;
Kocharovsky, V. V. .
JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (04) :942-964
[34]   Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime [J].
Benedikter, Niels ;
Phan Thimh Nam ;
Porta, Marcello ;
Schlein, Benjamin ;
Seiringer, Robert .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (03) :2097-2150
[35]   Ground state energy of a dilute two-dimensional Bose gas from the Bogoliubov free energy functional [J].
Fournais, Soren ;
Napiorkowski, Marcin ;
Reuvers, Robin ;
Solovej, Jan Philip .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)