Application of Deep Learning in Sea Surface Height Estimation of GNSS Data Sets

被引:0
作者
Su, Yucheng [1 ]
Fu, Shuai [2 ]
Jiao, Boyang [3 ,4 ]
Su, Yekang [1 ]
Mao, Taoning [1 ]
He, Yuping [1 ]
Jiang, Yi [2 ]
机构
[1] Zhuhai Publ Meteorol Serv Ctr, Zhuhai 519000, Peoples R China
[2] Macau Univ Sci & Technol, State Key Lab Lunar & Planetary Sci, Taipa 999078, Macau, Peoples R China
[3] Sun Yat sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
[4] Sun Yat sen Univ, Key Lab Trop Atmosphere Ocean Syst, Minist Educ, Zhuhai, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; data inversion; sea surface height; convolutional neural network; random forest;
D O I
10.1134/S1028334X2360322X
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this work, we used the convolutional neural network (CNN) method to invert sea surface height (SSH) from the Global Navigation Satellite System (GNSS) delayed Doppler map (DDM) data during 2009-2017 and compared the CNN inversion data with those obtained from traditional simple random forest (RF) method. SSH observations from the OSTM/Jason-2 satellite were used to judge the merits of the two methods. The results show that both methods yield good SSH inversion results, but when the training set is 9000, the root mean square errors of the SSH inversion results based on the CNN and the RF method are 16.78 and 15.96 respectively; as the training set increases above 9000, the accuracy of the CNN method is significantly better than that of the RF method. This suggests that SSH inversion based on the CNN method will become more advantageous as more data become available.
引用
收藏
页码:878 / 883
页数:6
相关论文
共 12 条
  • [1] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5
  • [4] Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission
    Foti, Giuseppe
    Gommenginger, Christine
    Jales, Philip
    Unwin, Martin
    Shaw, Andrew
    Robertson, Colette
    Rosello, Josep
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (13) : 5435 - 5441
  • [5] Fu S., 2020, SCI CHINA PHYS, V63, P1, DOI [10.1007/s11425-018-9502-y, DOI 10.1007/S11425-018-9502-Y]
  • [6] Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System
    Gleason, Scott
    Ruf, Christopher S.
    Clarizia, Maria Paola
    O'Brien, Andrew J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05): : 2495 - 2509
  • [7] Hall C., 1988, INT GEOSCIENCE REMOT, P561, DOI DOI 10.1109/IGARSS.1988.570200
  • [8] The OSTM/Jason-2 Mission
    Lambin, Juliette
    Morrow, Rosemary
    Fu, Lee-Lueng
    Willis, Josh K.
    Bonekamp, Hans
    Lillibridge, John
    Perbos, Jacqueline
    Zaouche, Gerard
    Vaze, Parag
    Bannoura, Walid
    Parisot, Francois
    Thouvenot, Eric
    Coutin-Faye, Sophie
    Lindstrom, Eric
    Mignogno, Mike
    [J]. MARINE GEODESY, 2010, 33 : 4 - 25
  • [9] Impact of the arc length on GNSS analysis results
    Lutz, Simon
    Meindl, Michael
    Steigenberger, Peter
    Beutler, Gerhard
    Sosnica, Krzysztof
    Schaer, Stefan
    Dach, Rolf
    Arnold, Daniel
    Thaller, Daniela
    Jaeggi, Adrian
    [J]. JOURNAL OF GEODESY, 2016, 90 (04) : 365 - 378
  • [10] Deep learning
    Rusk, Nicole
    [J]. NATURE METHODS, 2016, 13 (01) : 35 - 35