A Residual Network with Efficient Transformer for Lightweight Image Super-Resolution

被引:0
|
作者
Yan, Fengqi [1 ]
Li, Shaokun [1 ]
Zhou, Zhiguo [1 ,2 ]
Shi, Yonggang [1 ]
机构
[1] Beijing Inst Technol, Sch Integrated Circuits & Elect, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Peoples R China
关键词
single-image super-resolution; blueprint-separable convolution; efficient transformer; spatial attention; channel attention;
D O I
10.3390/electronics13010194
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep learning approaches have achieved remarkable results in the field of Single-Image Super-Resolution (SISR). To attain improved performance, most existing methods focus on constructing more-complex networks that demand extensive computational resources, thereby significantly impeding the advancement and real-world application of super-resolution techniques. Furthermore, many lightweight super-resolution networks employ knowledge distillation strategies to reduce network parameters, which can considerably slow down inference speeds. In response to these challenges, we propose a Residual Network with an Efficient Transformer (RNET). RNET incorporates three effective design elements. First, we utilize Blueprint-Separable Convolution (BSConv) instead of traditional convolution, effectively reducing the computational workload. Second, we propose a residual connection structure for local feature extraction, streamlining feature aggregation and accelerating inference. Third, we introduce an efficient transformer module to enhance the network's ability to aggregate contextual features, resulting in recovered images with richer texture details. Additionally, spatial attention and channel attention mechanisms are integrated into our model, further augmenting its capabilities. We evaluate the proposed method on five general benchmark test sets. With these innovations, our network outperforms existing efficient SR methods on all test sets, achieving the best performance with the fewest parameters, particularly in the area of texture detail enhancement in images.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Lightweight group convolutional network for single image super-resolution
    Yang, Aiping
    Yang, Bingwang
    Ji, Zhong
    Pang, Yanwei
    Shao, Ling
    INFORMATION SCIENCES, 2020, 516 : 220 - 233
  • [32] Structured image super-resolution network based on improved Transformer
    Lv X.-D.
    Li J.
    Deng Z.-N.
    Feng H.
    Cui X.-T.
    Deng H.-X.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (05): : 865 - 874+910
  • [33] Depthwise channel attention network (DWCAN): An efficient and lightweight model for single image super-resolution and metaverse gaming
    Yasir, Muhammad
    Ullah, Inam
    Choi, Chang
    EXPERT SYSTEMS, 2024, 41 (04)
  • [34] Deep Residual Network in Wavelet Domain for Image Super-resolution
    Duan L.-J.
    Wu C.-L.
    En Q.
    Qiao Y.-H.
    Zhang Y.-D.
    Chen J.-C.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (04): : 941 - 953
  • [35] Deep Residual Attention Network for Spectral Image Super-Resolution
    Shi, Zhan
    Chen, Chang
    Xiong, Zhiwei
    Liu, Dong
    Zha, Zheng-Jun
    Wu, Feng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 214 - 229
  • [36] HASN: hybrid attention separable network for efficient image super-resolution
    Cao, Weifeng
    Lei, Xiaoyan
    Shi, Jun
    Liang, Wanyong
    Liu, Jie
    Bai, Zongfei
    VISUAL COMPUTER, 2024, : 3423 - 3435
  • [37] Pixel attention convolutional network for image super-resolution
    Wang, Xin
    Zhang, Shufen
    Lin, Yuanyuan
    Lyu, Yanxia
    Zhang, Jiale
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (11): : 8589 - 8599
  • [38] Pixel attention convolutional network for image super-resolution
    Xin Wang
    Shufen Zhang
    Yuanyuan Lin
    Yanxia Lyu
    Jiale Zhang
    Neural Computing and Applications, 2023, 35 : 8589 - 8599
  • [39] PFFN: Progressive Feature Fusion Network for Lightweight Image Super-Resolution
    Zhang, Dongyang
    Li, Changyu
    Xie, Ning
    Wang, Guoqing
    Shao, Jie
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3682 - 3690
  • [40] Lightweight Single Image Super-Resolution with Selective Channel Processing Network
    Zhu, Hongyu
    Tang, Hao
    Hu, Yaocong
    Tao, Huanjie
    Xie, Chao
    SENSORS, 2022, 22 (15)