Learning to Adapt Genetic Algorithms for Multi-Objective Flexible Job Shop Scheduling Problems

被引:2
作者
Reijnen, Robbert [1 ]
Bukhsh, Zaharah [1 ]
Zhang, Yingqian [1 ]
Guzek, Mateusz [2 ]
机构
[1] Eindhoven Univ Technol, Dept Ind Engn, Eindhoven, Netherlands
[2] Goodyear Innovat Ctr Luxembourg, Decis Sci & Optimizat, Colmar Berg, Luxembourg
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
关键词
Evolutionary Algorithms; Deep Reinforcement Learning; Adaptive Parameter Control; Flexible Job Shop Scheduling; OPTIMIZATION;
D O I
10.1145/3583133.3590700
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.
引用
收藏
页码:315 / 318
页数:4
相关论文
共 13 条
[1]   A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms [J].
Aleti, Aldeida ;
Moser, Irene .
ACM COMPUTING SURVEYS, 2016, 49 (03)
[2]  
Brandimarte P., 1993, Annals of Operations Research, V41, P157, DOI 10.1007/BF02023073
[3]  
Coello C.C., 2007, EVOLUTIONARY ALGORIT, DOI [10.1007/978-0-387-36797-2, DOI 10.1007/978-0-387-36797-2]
[4]   Three new metrics to measure the convergence of metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization [J].
Collette, Y ;
Siarry, P .
COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (04) :773-792
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]   Mathematical modeling and heuristic approaches to flexible job shop scheduling problems [J].
Fattahi, Parviz ;
Mehrabad, Mohammad Saidi ;
Jolai, Fariborz .
JOURNAL OF INTELLIGENT MANUFACTURING, 2007, 18 (03) :331-342
[7]   Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems [J].
Kacem, I ;
Hammadi, S ;
Borne, P .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2002, 32 (01) :1-13
[8]   Parameter Control in Evolutionary Algorithms: Trends and Challenges [J].
Karafotias, Giorgos ;
Hoogendoorn, Mark ;
Eiben, A. E. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (02) :167-187
[9]   Deep Reinforcement Learning for Adaptive Parameter Control in Differential Evolution for Multi-Objective Optimization [J].
Reijnen, Robbert ;
Zhang, Yingqian ;
Bukhsh, Zaharah ;
Guzek, Mateusz .
2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, :804-811
[10]  
Schulman J, 2017, Arxiv, DOI [arXiv:1707.06347, DOI 10.48550/ARXIV.1707.06347]