C-PERFECT GRAPHS

被引:0
作者
Jayakumar, G. S. [1 ]
V., Sangeetha [1 ]
机构
[1] Christ Deemed Univ, Dept Math, Bangalore 560029, Karnataka, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2023年 / 13卷
关键词
Perfect graphs; C-perfect graphs; Graph minors; Hamilton-ian graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is said to be C-perfect if, for every induced subgraph H in G, the cycle independence number of H is equal to its corresponding cycle covering number. This article deals with the study on C-perfection of various classes of graphs and explores the properties of C-perfect graphs. Further, all forbidden classes for C-perfect graphs are identified and a characterisation for C-perfect graphs is obtained.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 11 条
  • [1] Bailey R., 1997, London Mathematical Society Lecture Note Series, DOI [10.1017/CBO9780511662119, DOI 10.1017/CBO9780511662119]
  • [2] Berge C., 1973, Graphs and Hypergraphs
  • [3] Surfaces, tree-width, clique-minors, and partitions
    Ding, GL
    Oporowski, B
    Sanders, DP
    Vertigan, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (02) : 221 - 246
  • [4] Gallai T., 2001, Series in Discrete Mathematics and Optimization
  • [5] Jayakumar G. S., Discrete Mathematics, Algorithms and Applications
  • [6] On graphs with no induced subdivision of K4
    Leveque, Benjamin
    Maffray, Frederic
    Trotignon, Nicolas
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) : 924 - 947
  • [7] Lovász L, 2006, B AM MATH SOC, V43, P75
  • [8] Lovasz L., 2009, Classic Papers in Combinatorics, Modern Birkhauser Classics, DOI [10.1007/978-0-8176-4842-8, DOI 10.1007/978-0-8176-4842-8]
  • [9] Ravindra G, 2011, 2 IND TAIW C DISCR M
  • [10] West D. B., 2001, INTRO GRAPH THEORY