Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention

被引:0
|
作者
Xie, Jincan [1 ,2 ]
Li, Shuang [1 ,2 ]
Liu, Chunsheng [1 ,2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat Engn, Jinan 250353, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
trajectory prediction; spatial-temporal interaction; social interaction;
D O I
10.3390/s23187830
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Trajectory prediction aims to predict the movement intention of traffic participants in the future based on the historical observation trajectories. For traffic scenarios, pedestrians, vehicles and other traffic participants have social interaction of surrounding traffic participants in both time and spatial dimensions. Most previous studies only use pooling methods to simulate the interaction process between participants and cannot fully capture the spatio-temporal dependence, possibly accumulating errors with the increase in prediction time. To overcome these problems, we propose the Spatial-Temporal Interaction Attention-based Trajectory Prediction Network (STIA-TPNet), which can effectively model the spatial-temporal interaction information. Based on trajectory feature extraction, the novel Spatial-Temporal Interaction Attention Module (STIA Module) is proposed to extract the interaction relationships between traffic participants, including temporal interaction attention, spatial interaction attention, and spatio-temporal attention fusion. By adaptive allocation of attention weights, temporal interaction attention is a temporal attention mechanism used to capture the movement pattern of each traffic participant in the scene, which can learn the importance of historical trajectories at different moments to future behaviors. Since the participants number in recent traffic scenes dynamically changes, the spatial interaction attention is designed to abstract the traffic participants in the scene into graph nodes, and abstract the social interaction between participants into graph edges. Coupling the temporal and spatial interaction attentions can adaptively model the temporal-spatial information and achieve accurate trajectory prediction. By performing experiments on the INTERACTION dataset and the UTP (Unmanned Aerial Vehicle-based Trajectory Prediction) dataset, the experimental results show that the proposed method significantly improves the accuracy of trajectory prediction and outperforms the representative methods in comparison.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Vehicle Trajectory Prediction Based on Spatial-temporal Attention Mechanism
    Li W.-L.
    Han D.
    Shi X.-H.
    Zhang Y.-N.
    Li C.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2023, 36 (01): : 226 - 239
  • [2] A spatial-temporal attention model for human trajectory prediction
    Zhao, Xiaodong
    Chen, Yaran
    Guo, Jin
    Zhao, Dongbin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 965 - 974
  • [3] A Spatial-Temporal Attention Model for Human Trajectory Prediction
    Xiaodong Zhao
    Yaran Chen
    Jin Guo
    Dongbin Zhao
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (04) : 965 - 974
  • [4] Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction
    Li, Yuanman
    Liang, Rongqin
    Wei, Wei
    Wang, Wei
    Zhou, Jiantao
    Li, Xia
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (03): : 1006 - 1019
  • [5] Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
    Zhang, Kunpeng
    Feng, Xiaoliang
    Wu, Lan
    He, Zhengbing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22343 - 22353
  • [6] Trajectory Prediction with Attention-Based Spatial-Temporal Graph Convolutional Networks for Autonomous Driving
    Li, Hongbo
    Ren, Yilong
    Li, Kaixuan
    Chao, Wenjie
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [7] Multi-Modal Pedestrian Trajectory Prediction for Edge Agents Based on Spatial-Temporal Graph
    Zou, Xiangyu
    Sun, Bin
    Zhao, Duan
    Zhu, Zongwei
    Zhao, Jinjin
    He, Yongxin
    IEEE ACCESS, 2020, 8 : 83321 - 83332
  • [8] Intention-Aware Vehicle Trajectory Prediction Based on Spatial-Temporal Dynamic Attention Network for Internet of Vehicles
    Chen, Xiaobo
    Zhang, Huanjia
    Zhao, Feng
    Hu, Yu
    Tan, Chenkai
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19471 - 19483
  • [9] Map-Free Trajectory Prediction in Traffic With Multi-Level Spatial-Temporal Modeling
    Xiang, Junhong
    Nan, Zhixiong
    Song, Zhe
    Huang, Jun
    Li, Lingxi
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3258 - 3270
  • [10] STGM: Vehicle Trajectory Prediction Based on Generative Model for Spatial-Temporal Features
    Zhong, Zhi
    Luo, Yutao
    Liang, Weiqiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18785 - 18793