On group actions on Riemann-Roch spaces of curves

被引:0
作者
Carocca, Angel [1 ]
Latorre, Daniela Vasquez [2 ]
机构
[1] Univ La Frontera, Dept Matemat, Casilla 54-D, Temuco, Chile
[2] Univ Valle, Dept Matemat, Ciudad Univ Melendez,Calle 13 00-00, Cali 760032, Colombia
关键词
Riemann surfaces; Divisors; Riemann -Roch space; GALOIS-MODULE STRUCTURE; REPRESENTATIONS; SURFACES; FORMULA;
D O I
10.1016/j.jpaa.2023.107451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group acting on a compact Riemann surface X and D be a G-invariant divisor on X. The action of G on X induces a linear representation LG(D) of G on the Riemann-Roch space associated to D. In this paper we give some results on the decomposition of LG(D) as sum of complex irreducible representations of G, for D an effective non-special G-invariant divisor. In particular, we give explicit formulae for the multiplicity of each complex irreducible factor in LG(D). We work out some examples on well known families of curves. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 16 条