Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration

被引:32
|
作者
Mahmoud, Abdel H. [1 ]
Han, Yuanyuan [1 ,2 ]
Dal-Fabbro, Renan [1 ]
Daghrery, Arwa [1 ,3 ]
Xu, Jinping [1 ]
Kaigler, Darnell [4 ,5 ]
Bhaduri, Sarit B. [6 ,7 ]
Malda, Jos [8 ,9 ,10 ]
Bottino, Marco C. [1 ,5 ]
机构
[1] Univ Michigan, Sch Dent, Dept Cariol Restorat Sci & Endodont, Ann Arbor, MI 48109 USA
[2] Univ Hong Kong, Fac Dent, Appl Oral Sci & Community Dent Care, Hong Kong 999077, Peoples R China
[3] Jazan Univ, Sch Dent, Dept Restorat Dent Sci, Jazan 45142, Saudi Arabia
[4] Univ Michigan, Sch Dent, Dept Periodont & Oral Med, Coll Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[6] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA
[7] Natl Sci Fdn, EEC Div, Directorate Engn, Alexandria, VA 22314 USA
[8] Regenerat Med Ctr Utrecht, NL-3584 CT Utrecht, Netherlands
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3508 TC Utrecht, Netherlands
[10] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 CX Utrecht, Netherlands
基金
美国国家卫生研究院;
关键词
bone; regeneration; tissue engineering; electrospinning; extracellular matrix; gelatin; OPEN-FLAP DEBRIDEMENT; TISSUE REGENERATION; INTRABONY DEFECTS; BETA-TCP; FIBERS; SYSTEM;
D O I
10.1021/acsami.3c03059
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Major advances in the field of periodontal tissue engineeringhavefavored the fabrication of biodegradable membranes with tunable physicaland biological properties for guided bone regeneration (GBR). Herein,we engineered innovative nanoscale beta-tricalcium phosphate (& beta;-TCP)-ladengelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkablecomposite fibrous membranes via electrospinning. Chemo-morphologicalfindings showed that the composite microfibers had a uniform porousnetwork and & beta;-TCP particles successfully integrated within thefibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranesled to increased cell attachment, proliferation, mineralization, andosteogenic gene expression in alveolar bone-derived mesenchymal stemcells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promoterobust bone regeneration in rat calvarial critical-size defects, showingremarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether,the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiationof aBMSCs in vitro and pronounced bone formation in vivo. Our dataconfirmed that the electrospun GelMA/PCL-TCP composite has a strongpotential as a promising membrane for guided bone regeneration.
引用
收藏
页码:32121 / 32135
页数:15
相关论文
共 50 条
  • [41] Ascorbyl palmitate–PCL fiber mats loaded with strontium polyphosphate nanoparticles for guided bone regeneration
    Bothaina M. Abdel-Hady
    Basma Ekram
    Werner E. G. Müller
    Abdul Aziz M. Gad
    Xiaohong Wang
    Heinz C. Schröder
    Emad Tolba
    Polymer Bulletin, 2024, 81 : 3355 - 3374
  • [42] Biomineralized tetramethylpyrazine-loaded PCL/gelatin nanofibrous membrane promotes vascularization and bone regeneration of rat cranium defects
    Wu, Xiaoyu
    Ni, Su
    Dai, Ting
    Li, Jingyan
    Shao, Fang
    Liu, Chun
    Wang, Jiafeng
    Fan, Shijie
    Tan, Yadong
    Zhang, Linxiang
    Jiang, Qiting
    Zhao, Hongbin
    JOURNAL OF NANOBIOTECHNOLOGY, 2023, 21 (01)
  • [43] In-vitro and in-vivo studies of PLA/PCL/gelatin composite scaffold containing ascorbic acid for bone regeneration
    Hashemi, Seyedeh Fatemeh
    Mehrabi, Mohsen
    Ehterami, Arian
    Gharravi, Anneh Mohammad
    Bitaraf, Fateme Sadat
    Salehi, Majid
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2021, 61
  • [44] Development of novel aligned nanofibrous composite membranes for guided bone regeneration
    Kharaziha, M.
    Fathi, M. H.
    Edris, H.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2013, 24 : 9 - 20
  • [45] Vitalized Guided Bone Regeneration Membrane from Marrow Stromal Cells
    Feng, Xue
    Gao, Zhan
    Mao, Tianqiu
    Chen, Fulin
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2009, 24 (04) : 672 - 678
  • [46] Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp
    Wang, Jie-Lin
    Chen, Qian
    Du, Bei-Bei
    Cao, Lu
    Lin, Hong
    Fan, Zhong-Yong
    Dong, Jian
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 87 : 60 - 69
  • [47] Ascorbyl palmitate-PCL fiber mats loaded with strontium polyphosphate nanoparticles for guided bone regeneration
    Abdel-Hady, Bothaina M.
    Ekram, Basma
    Mueller, Werner E. G.
    Gad, Abdul Aziz M.
    Wang, Xiaohong
    Schroeder, Heinz C.
    Tolba, Emad
    POLYMER BULLETIN, 2024, 81 (04) : 3355 - 3374
  • [48] Performance of Novel Nanofibrous Biopolymer Membrane for Guided Bone Regeneration within Rat Mandibular Defect
    Kim, Joong-Hyun
    Kim, Mi-Kyung
    Park, Jeong-Hui
    Won, Jong-Eun
    Kim, Tae-Hyun
    Kim, Hae-Won
    IN VIVO, 2011, 25 (04): : 589 - 595
  • [49] Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects
    Ni, PeiYan
    Ding, QiuXia
    Fan, Min
    Liao, JinFeng
    Qian, ZhiYong
    Luo, JingCong
    Li, XiuQun
    Luo, Feng
    Yang, ZhiMing
    Wei, YuQuan
    BIOMATERIALS, 2014, 35 (01) : 236 - 248
  • [50] Fabrication of Antibacterial Polyhydroxybutyrate/Lauric Acid Composite Membranes for Guided Bone Regeneration
    Zeynep Karahaliloglu
    Ebru Kilicay
    Fibers and Polymers, 2022, 23 : 1463 - 1474