Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration

被引:32
|
作者
Mahmoud, Abdel H. [1 ]
Han, Yuanyuan [1 ,2 ]
Dal-Fabbro, Renan [1 ]
Daghrery, Arwa [1 ,3 ]
Xu, Jinping [1 ]
Kaigler, Darnell [4 ,5 ]
Bhaduri, Sarit B. [6 ,7 ]
Malda, Jos [8 ,9 ,10 ]
Bottino, Marco C. [1 ,5 ]
机构
[1] Univ Michigan, Sch Dent, Dept Cariol Restorat Sci & Endodont, Ann Arbor, MI 48109 USA
[2] Univ Hong Kong, Fac Dent, Appl Oral Sci & Community Dent Care, Hong Kong 999077, Peoples R China
[3] Jazan Univ, Sch Dent, Dept Restorat Dent Sci, Jazan 45142, Saudi Arabia
[4] Univ Michigan, Sch Dent, Dept Periodont & Oral Med, Coll Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[6] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA
[7] Natl Sci Fdn, EEC Div, Directorate Engn, Alexandria, VA 22314 USA
[8] Regenerat Med Ctr Utrecht, NL-3584 CT Utrecht, Netherlands
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3508 TC Utrecht, Netherlands
[10] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 CX Utrecht, Netherlands
基金
美国国家卫生研究院;
关键词
bone; regeneration; tissue engineering; electrospinning; extracellular matrix; gelatin; OPEN-FLAP DEBRIDEMENT; TISSUE REGENERATION; INTRABONY DEFECTS; BETA-TCP; FIBERS; SYSTEM;
D O I
10.1021/acsami.3c03059
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Major advances in the field of periodontal tissue engineeringhavefavored the fabrication of biodegradable membranes with tunable physicaland biological properties for guided bone regeneration (GBR). Herein,we engineered innovative nanoscale beta-tricalcium phosphate (& beta;-TCP)-ladengelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkablecomposite fibrous membranes via electrospinning. Chemo-morphologicalfindings showed that the composite microfibers had a uniform porousnetwork and & beta;-TCP particles successfully integrated within thefibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranesled to increased cell attachment, proliferation, mineralization, andosteogenic gene expression in alveolar bone-derived mesenchymal stemcells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promoterobust bone regeneration in rat calvarial critical-size defects, showingremarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether,the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiationof aBMSCs in vitro and pronounced bone formation in vivo. Our dataconfirmed that the electrospun GelMA/PCL-TCP composite has a strongpotential as a promising membrane for guided bone regeneration.
引用
收藏
页码:32121 / 32135
页数:15
相关论文
共 50 条
  • [21] Fabrication and characterization of PCL/CaCO3 electrospun composite membrane for bone repair
    Cao, Zhinan
    Wang, Dandan
    Lyu, Lingwei
    Gong, Yihong
    Li, Yan
    RSC ADVANCES, 2016, 6 (13) : 10641 - 10649
  • [22] Liver tissue-derived ECM loaded nanocellulose-alginate-TCP composite beads for accelerated bone regeneration
    Rahaman, Md Sohanur
    Park, Seong-Su
    Kang, Hoe-Jin
    Sultana, Tamanna
    Gwon, Jae-Gyoung
    Lee, Byong-Taek
    BIOMEDICAL MATERIALS, 2022, 17 (05)
  • [23] A quaternary composite fiber membrane for guided tissue regeneration
    Li, Haotian
    Song, Ping
    Qiao, Tiankui
    Cui, Qingqing
    Song, Xiaofeng
    Zhang, Baochang
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2016, 27 (02) : 178 - 184
  • [24] Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration
    Ye, Huilin
    Zhu, Junjin
    Deng, Dan
    Jin, Shue
    Li, Jidong
    Man, Yi
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2019, 30 (16) : 1505 - 1522
  • [25] PLGA/Hydroxyapatite/β-TCP Composite Scaffold Possessing Negative Poisson's Ratio for Bone Regeneration
    Choi, Hong Jin
    Jang, Hyeon Seong
    Lee, Junseok
    Cho, Jongman
    Kim, Jeong Koo
    POLYMER-KOREA, 2020, 44 (05) : 684 - 688
  • [26] In vitro and in vivo assessment of a new acellular human amnion/chorion membrane device for guided bone regeneration
    Galvez, Paul
    Omar, Naima Ahmed
    Siadous, Robin
    Durand, Marlene
    Comperat, Leo
    Lafarge, Xavier
    Gindraux, Florelle
    Sentilhes, Loic
    Fricain, Jean-Christophe
    L'Heureux, Nicolas
    Fenelon, Mathilde
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Load-bearing biodegradable PCL-PGA-beta TCP scaffolds for bone tissue regeneration
    Kumar, Alok
    Mir, Seyed Mohammad
    Aldulijan, Ibrahim
    Mahajan, Agrim
    Anwar, Aneela
    Leon, Carlos H.
    Terracciano, Amalia
    Zhao, Xiao
    Su, Tsan-Liang
    Kalyon, Dilhan M.
    Kumbar, Sangamesh G.
    Yu, Xiaojun
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (02) : 193 - 200
  • [28] Surface-Modified Pliable PDLLA/PCL/β-TCP Scaffolds as a Promising Delivery System for Bone Regeneration
    Hu, Yuanyuan
    Wang, Jing
    Xing, Wanli
    Cao, Lingyan
    Liu, Changsheng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (20)
  • [29] Guided osteoporotic bone regeneration with composite scaffolds of mineralized ECM/heparin membrane loaded with BMP2-related peptide
    Sun, Tingfang
    Liu, Man
    Yao, Sheng
    Ji, Yanhui
    Shi, Lei
    Tang, Kai
    Xiong, Zekang
    Yang, Fan
    Chen, Kaifang
    Guo, Xiaodong
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 : 791 - 804
  • [30] Electrospun F18 Bioactive Glass/PCL-Poly (ε-caprolactone)-Membrane for Guided Tissue Regeneration
    Pitaluga, Lucas Hidalgo
    Souza, Marina Trevelin
    Zanotto, Edgar Dutra
    Romero, Martin Eduardo Santocildes
    Hatton, Paul V.
    MATERIALS, 2018, 11 (03):