Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration

被引:32
|
作者
Mahmoud, Abdel H. [1 ]
Han, Yuanyuan [1 ,2 ]
Dal-Fabbro, Renan [1 ]
Daghrery, Arwa [1 ,3 ]
Xu, Jinping [1 ]
Kaigler, Darnell [4 ,5 ]
Bhaduri, Sarit B. [6 ,7 ]
Malda, Jos [8 ,9 ,10 ]
Bottino, Marco C. [1 ,5 ]
机构
[1] Univ Michigan, Sch Dent, Dept Cariol Restorat Sci & Endodont, Ann Arbor, MI 48109 USA
[2] Univ Hong Kong, Fac Dent, Appl Oral Sci & Community Dent Care, Hong Kong 999077, Peoples R China
[3] Jazan Univ, Sch Dent, Dept Restorat Dent Sci, Jazan 45142, Saudi Arabia
[4] Univ Michigan, Sch Dent, Dept Periodont & Oral Med, Coll Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[6] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA
[7] Natl Sci Fdn, EEC Div, Directorate Engn, Alexandria, VA 22314 USA
[8] Regenerat Med Ctr Utrecht, NL-3584 CT Utrecht, Netherlands
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3508 TC Utrecht, Netherlands
[10] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 CX Utrecht, Netherlands
基金
美国国家卫生研究院;
关键词
bone; regeneration; tissue engineering; electrospinning; extracellular matrix; gelatin; OPEN-FLAP DEBRIDEMENT; TISSUE REGENERATION; INTRABONY DEFECTS; BETA-TCP; FIBERS; SYSTEM;
D O I
10.1021/acsami.3c03059
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Major advances in the field of periodontal tissue engineeringhavefavored the fabrication of biodegradable membranes with tunable physicaland biological properties for guided bone regeneration (GBR). Herein,we engineered innovative nanoscale beta-tricalcium phosphate (& beta;-TCP)-ladengelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkablecomposite fibrous membranes via electrospinning. Chemo-morphologicalfindings showed that the composite microfibers had a uniform porousnetwork and & beta;-TCP particles successfully integrated within thefibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranesled to increased cell attachment, proliferation, mineralization, andosteogenic gene expression in alveolar bone-derived mesenchymal stemcells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promoterobust bone regeneration in rat calvarial critical-size defects, showingremarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether,the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiationof aBMSCs in vitro and pronounced bone formation in vivo. Our dataconfirmed that the electrospun GelMA/PCL-TCP composite has a strongpotential as a promising membrane for guided bone regeneration.
引用
收藏
页码:32121 / 32135
页数:15
相关论文
共 50 条
  • [1] Tailored alginate/PCL-gelatin-β-TCP membrane for guided bone regeneration
    Joo, Gyeongjin
    Park, Myeongki
    Park, Seong-su
    Tripathi, Garima
    Lee, Byong-Taek
    BIOMEDICAL MATERIALS, 2022, 17 (04)
  • [2] Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration
    Ezati M.
    Safavipour H.
    Houshmand B.
    Faghihi S.
    Progress in Biomaterials, 2018, 7 (3) : 225 - 237
  • [3] Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration
    Castro, Antonio G. B.
    Diba, Mani
    Kersten, Monique
    Jansen, John A.
    van den Beucken, Jeroen J. J. P.
    Yang, Fang
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 85 : 154 - 161
  • [4] Guided Tissue Regeneration with Use of β-TCP/Chitosan Composite Membrane
    Kuo, Shyh Ming
    Chang, Shwu Jen
    Niu, Gregory Cheng-Chie
    Lan, Cheng-Wen
    Cheng, Wen Tai
    Yang, Chen Zen
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (05) : 3127 - 3134
  • [5] Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes
    Ren Ke
    Wang Yi
    Sun Tao
    Yue Wen
    Zhang Hongyu
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 78 : 324 - 332
  • [6] Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study
    Rowe, Matthew J.
    Kamocki, Krzysztof
    Pankajakshan, Divya
    Li, Ding
    Bruzzaniti, Angela
    Thomas, Vinoy
    Blanchard, Steve B.
    Bottino, Marco C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (03) : 594 - 605
  • [7] Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration
    Wang, Feilong
    Xia, Dandan
    Wang, Siyi
    Gu, Ranli
    Yang, Fan
    Zhao, Xiao
    Liu, Xuenan
    Zhu, Yuan
    Liu, Hao
    Xu, Yongxiang
    Liu, Yunsong
    Zhou, Yongsheng
    BIOACTIVE MATERIALS, 2022, 13 : 53 - 63
  • [8] Assessment of fresh and preserved amniotic membrane for guided bone regeneration in mice
    Fenelon, Mathilde
    Etchebarne, Marion
    Siadous, Robin
    Gremare, Agathe
    Durand, Marlene
    Sentilhes, Loic
    Torres, Yoann
    Catros, Sylvain
    Gindraux, Florelle
    L'Heureux, Nicolas
    Fricain, Jean-Christophe
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (10) : 2044 - 2056
  • [9] Amino Acid-Based Poly(ester urea) Biodegradable Membrane for Guided Bone Regeneration
    Dal-Fabbro, Renan
    Anselmi, Caroline
    Swanson, W. Benton
    Cardoso, Lais Medeiros
    Toledo, Priscila T. A.
    Daghrery, Arwa
    Kaigler, Darnell
    Abel, Alexandra
    Becker, Matthew L.
    Soliman, Sherif
    Bottino, Marco C.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (40) : 53419 - 53434
  • [10] Composite PCL Scaffold With 70% b-TCP as Suitable Structure for Bone Replacement
    Ghezzi, Benedetta
    Matera, Biagio
    Meglioli, Matteo
    Rossi, Francesca
    Duraccio, Donatella
    Faga, Maria Giulia
    Zappettini, Andrea
    Macaluso, Guido Maria
    Lumetti, Simone
    INTERNATIONAL DENTAL JOURNAL, 2024, 74 (06) : 1220 - 1232