Survey on Unsupervised Domain Adaptation for Semantic Segmentation for Visual Perception in Automated Driving

被引:15
|
作者
Schwonberg, Manuel [1 ]
Niemeijer, Joshua [2 ]
Termohlen, Jan-Aike [3 ]
Schafer, Jorg P. [2 ]
Schmidt, Nico M. [1 ]
Gottschalk, Hanno [4 ]
Fingscheidt, Tim [3 ]
机构
[1] CARIAD SE, D-38440 Wolfsburg, Germany
[2] Deutsch Zent Luft & Raumfahrt DLR eV, D-38108 Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Commun Technol, D-38106 Braunschweig, Germany
[4] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Surveys; Deep learning; Semantic segmentation; Task analysis; Visual perception; Taxonomy; Synthetic data; Neural networks; Unsupervised learning; Autonomous automobiles; Computer vision; deep neural networks; unsupervised domain adaptation; semantic segmentation; automated driving;
D O I
10.1109/ACCESS.2023.3277785
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks (DNNs) have proven their capabilities in the past years and play a significant role in environment perception for the challenging application of automated driving. They are employed for tasks such as detection, semantic segmentation, and sensor fusion. Despite tremendous research efforts, several issues still need to be addressed that limit the applicability of DNNs in automated driving. The bad generalization of DNNs to unseen domains is a major problem on the way to a safe, large-scale application, because manual annotation of new domains is costly, particularly for semantic segmentation. For this reason, methods are required to adapt DNNs to new domains without labeling effort. This task is termed unsupervised domain adaptation (UDA). While several different domain shifts challenge DNNs, the shift between synthetic and real data is of particular importance for automated driving, as it allows the use of simulation environments for DNN training. We present an overview of the current state of the art in this research field. We categorize and explain the different approaches for UDA. The number of considered publications is larger than any other survey on this topic. We also go far beyond the description of the UDA state-of-the-art, as we present a quantitative comparison of approaches and point out the latest trends in this field. We conduct a critical analysis of the state-of-the-art and highlight promising future research directions. With this survey, we aim to facilitate UDA research further and encourage scientists to exploit novel research directions.
引用
收藏
页码:54296 / 54336
页数:41
相关论文
共 50 条
  • [21] PANDA: A Polarized Attention Network for Enhanced Unsupervised Domain Adaptation in Semantic Segmentation
    Kao, Chiao-Wen
    Chang, Wei-Ling
    Lee, Chun-Chieh
    Fan, Kuo-Chin
    ELECTRONICS, 2024, 13 (21)
  • [22] Enhanced Feature Alignment for Unsupervised Domain Adaptation of Semantic Segmentation
    Chen, Tao
    Wang, Shui-Hua
    Wang, Qiong
    Zhang, Zheng
    Xie, Guo-Sen
    Tang, Zhenmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1042 - 1054
  • [23] A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
    Zhang, Yang
    David, Philip
    Foroosh, Hassan
    Gong, Boqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (08) : 1823 - 1841
  • [24] On Adversarial Robustness of Semantic Segmentation Models for Automated Driving
    Yin, Huilin
    Wang, Ruining
    Liu, Boyu
    Yan, Jun
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 867 - 873
  • [25] Unsupervised Domain Adaptation for Semantic Segmentation of Urban Street Scenes Reflected by Convex Mirrors
    Shi, Yongjie
    Ying, Xianghua
    Zha, Hongbin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24276 - 24289
  • [26] Source Data-Free Unsupervised Domain Adaptation for Semantic Segmentation
    Ye, Mucong
    Zhang, Jing
    Ouyang, Jingpeng
    Yuan, Ding
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2233 - 2242
  • [27] CMT: Cross Mean Teacher Unsupervised Domain Adaptation for VHR Image Semantic Segmentation
    Yan, Liang
    Fan, Bin
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] BSAM: Bidirectional Scene-Aware Mixup for Unsupervised Domain Adaptation in Semantic Segmentation
    Xing, Congying
    Li, Gao
    Zhang, Lefei
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 54 - 66
  • [29] Neutral Cross-Entropy Loss Based Unsupervised Domain Adaptation for Semantic Segmentation
    Xu, Hanqing
    Yang, Ming
    Deng, Liuyuan
    Qian, Yeqiang
    Wang, Chunxiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4516 - 4525
  • [30] Unsupervised domain adaptation for mobile semantic segmentation based on cycle consistency and feature alignment
    Toldo, Marco
    Michieli, Umberto
    Agresti, Gianluca
    Zanuttigh, Pietro
    IMAGE AND VISION COMPUTING, 2020, 95