Martensitic transformation dominated tensile plastic deformation of nanograins in a gradient nanostructured 316L stainless steel

被引:39
作者
Fang, T. H. [1 ]
Tao, N. R. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
美国国家科学基金会;
关键词
Gradient nanograins; 316L stainless steel; Deformation mechanism; Martensitic transformation; Tensile ductility; NANOCRYSTALLINE ALUMINUM; SURFACE-LAYER; STRAIN STATE; DUCTILITY; MECHANISMS; STRENGTH; CU;
D O I
10.1016/j.actamat.2023.118780
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We systematically investigated the tensile deformation mechanisms and mechanical properties of a gradient nanograined AISI 316 L stainless steel prepared by means of surface mechanical grinding treatment. The gradient nanograined samples exhibit a good synergy of high strength and remarkable tensile ductility at room temperature. Microstructural observations revealed that martensitic transformation co-operating with grain boundary migration accommodates the tensile plastic deformation of nanograins in the topmost layer of gradient nanograined 316 L SS, which is distinct from the traditional partial dislocation associated deformation twinning in homogeneous coarse-grained counterpart under tension loading. Accompanied by the decrease in grain boundary migration rate, the martensite content increases significantly with increasing tensile strain, reaching similar to 50% at a true strain of 50%. The newly formed martensites as strengthening phase not only provide dynamic work hardening, but also effectively suppress the strain localization, resulting in the substantial tensile ductility of the gradient nanograins.
引用
收藏
页数:10
相关论文
共 47 条
  • [1] Deformation twinning in nanocrystalline aluminum
    Chen, MW
    Ma, E
    Hemker, KJ
    Sheng, HW
    Wang, YM
    Cheng, XM
    [J]. SCIENCE, 2003, 300 (5623) : 1275 - 1277
  • [2] Mechanically-induced grain coarsening in gradient nano-grained copper
    Chen, W.
    You, Z. S.
    Tao, N. R.
    Jin, Z. H.
    Lu, L.
    [J]. ACTA MATERIALIA, 2017, 125 : 255 - 264
  • [3] Coupled grain boundary motion in aluminium: the effect of structural multiplicity
    Cheng, Kuiyu
    Zhang, Liang
    Lu, Cheng
    Tieu, Kiet
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [4] Extra strengthening and work hardening in gradient nanotwinned metals
    Cheng, Zhao
    Zhou, Haofei
    Lu, Qiuhong
    Gao, Huajian
    Lu, Lei
    [J]. SCIENCE, 2018, 362 (6414) : 559 - +
  • [5] Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing
    Eskandari, M.
    Najafizadeh, A.
    Kermanpur, A.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 519 (1-2): : 46 - 50
  • [6] Tension-induced softening and hardening in gradient nanograined surface layer in copper
    Fang, T. H.
    Tao, N. R.
    Lu, K.
    [J]. SCRIPTA MATERIALIA, 2014, 77 : 17 - 20
  • [7] Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper
    Fang, T. H.
    Li, W. L.
    Tao, N. R.
    Lu, K.
    [J]. SCIENCE, 2011, 331 (6024) : 1587 - 1590
  • [8] NANOCRYSTALLINE MATERIALS
    BIRRINGER, R
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 : 33 - 43
  • [9] Gottstein G., 2010, Grain Boundary Migration in metals: thermodynamics, kinetics, Applications, V2nd
  • [10] Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures
    Hasan, M. N.
    Liu, Y. F.
    An, X. H.
    Gu, J.
    Song, M.
    Cao, Y.
    Li, Y. S.
    Zhu, Y. T.
    Liao, X. Z.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 123 : 178 - 195