Deep Reinforcement Learning for Secrecy Energy-Efficient UAV Communication with Reconfigurable Intelligent Surface

被引:19
作者
Tham, Mau-Luen [1 ]
Wong, Yi Jie [1 ]
Iqbal, Amjad [1 ]
Bin Ramli, Nordin [2 ]
Zhu, Yongxu [3 ]
Dagiuklas, Tasos [4 ]
机构
[1] Univ Tunku Abdul Rahman, Dept Elect & Elect Engn, Kajang, Malaysia
[2] MIMOS Berhad, Kuala Lumpur, Malaysia
[3] Univ Warwick, Dept Elect & Elect Engn, Coventry, W Midlands, England
[4] London South Bank Univ, Cognit Syst Res Ctr, London, England
来源
2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC | 2023年
关键词
Secrecy energy efficiency; deep reinforcement learning; physical layer security; reconfigurable intelligent surface; unmanned aerial vehicle; TRAJECTORY DESIGN; SECURE; ROBUST;
D O I
10.1109/WCNC55385.2023.10118891
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the physical layer security (PLS) issue in reconfigurable intelligent surface (RIS) aided millimeter-wave rotary-wing unmanned aerial vehicle (UAV) communications under the presence of multiple eavesdroppers and imperfect channel state information (CSI). The goal is to maximize the worst-case secrecy energy efficiency (SEE) of UAV via a joint optimization of flight trajectory, UAV active beamforming and RIS passive beamforming. By interacting with the dynamically changing UAV environment, real- time decision making per time slot is possible via deep reinforcement learning (DRL). To decouple the continuous optimization variables, we introduce a twin-twin-delayed deep deterministic policy gradient (TTD3) to maximize the expected cumulative reward, which is linked to SEE enhancement. Simulation results confirm that the proposed method achieves greater secrecy energy savings than the traditional twin-deep deterministic policy gradient DRL (TDDRL)-based method.
引用
收藏
页数:6
相关论文
共 20 条
[11]   Throughput Maximization for RIS-UAV Relaying Communications [J].
Liu, Xin ;
Yu, Yingfeng ;
Li, Feng ;
Durrani, Tariq S. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) :19569-19574
[12]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[13]   Intelligent Reflecting Surfaces Assisted UAV Communications for Massive Networks: Current Trends, Challenges, and Research Directions [J].
Mohsan, Syed Agha Hassnain ;
Khan, Muhammad Asghar ;
Alsharif, Mohammed H. ;
Uthansakul, Peerapong ;
Solyman, Ahmed A. A. .
SENSORS, 2022, 22 (14)
[14]   Non-Terrestrial Networks in a Nutshell [J].
Msadaa I.C. ;
Zairi S. ;
Dhraief A. .
IEEE Internet of Things Magazine, 2022, 5 (02) :168-174
[15]   Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Secure Wireless Communications [J].
Yang, Helin ;
Xiong, Zehui ;
Zhao, Jun ;
Niyato, Dusit ;
Xiao, Liang ;
Wu, Qingqing .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) :375-388
[16]   On the Performance of RIS-Assisted Dual-Hop UAV Communication Systems [J].
Yang, Liang ;
Meng, Fanxu ;
Zhang, Jiayi ;
Hasna, Mazen O. ;
Di Renzo, Marco .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (09) :10385-10390
[17]  
Yuan XJ, 2021, IEEE WIREL COMMUN, V28, P136, DOI [10.1145/3505745.3505746, 10.1109/MWC.001.2000256]
[18]   Rotary-Wing UAV Enabled Wireless Network: Trajectory Design and Resource Allocation [J].
Zeng, Yong ;
Xu, Jie ;
Zhang, Rui .
2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
[19]   Energy Minimization in Internet-of-Things System Based on Rotary-Wing UAV [J].
Zhan, Cheng ;
Lai, Hong .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (05) :1341-1344
[20]   Stochastic Learning-Based Robust Beamforming Design for RIS-Aided Millimeter-Wave Systems in the Presence of Random Blockages [J].
Zhou, Gui ;
Pan, Cunhua ;
Ren, Hong ;
Wang, Kezhi ;
Elkashlan, Maged ;
Di Renzo, Marco .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) :1057-1061