Deep Reinforcement Learning for Secrecy Energy-Efficient UAV Communication with Reconfigurable Intelligent Surface

被引:19
作者
Tham, Mau-Luen [1 ]
Wong, Yi Jie [1 ]
Iqbal, Amjad [1 ]
Bin Ramli, Nordin [2 ]
Zhu, Yongxu [3 ]
Dagiuklas, Tasos [4 ]
机构
[1] Univ Tunku Abdul Rahman, Dept Elect & Elect Engn, Kajang, Malaysia
[2] MIMOS Berhad, Kuala Lumpur, Malaysia
[3] Univ Warwick, Dept Elect & Elect Engn, Coventry, W Midlands, England
[4] London South Bank Univ, Cognit Syst Res Ctr, London, England
来源
2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC | 2023年
关键词
Secrecy energy efficiency; deep reinforcement learning; physical layer security; reconfigurable intelligent surface; unmanned aerial vehicle; TRAJECTORY DESIGN; SECURE; ROBUST;
D O I
10.1109/WCNC55385.2023.10118891
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the physical layer security (PLS) issue in reconfigurable intelligent surface (RIS) aided millimeter-wave rotary-wing unmanned aerial vehicle (UAV) communications under the presence of multiple eavesdroppers and imperfect channel state information (CSI). The goal is to maximize the worst-case secrecy energy efficiency (SEE) of UAV via a joint optimization of flight trajectory, UAV active beamforming and RIS passive beamforming. By interacting with the dynamically changing UAV environment, real- time decision making per time slot is possible via deep reinforcement learning (DRL). To decouple the continuous optimization variables, we introduce a twin-twin-delayed deep deterministic policy gradient (TTD3) to maximize the expected cumulative reward, which is linked to SEE enhancement. Simulation results confirm that the proposed method achieves greater secrecy energy savings than the traditional twin-deep deterministic policy gradient DRL (TDDRL)-based method.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Dual-UAV-Enabled Secure Communications: Joint Trajectory Design and User Scheduling [J].
Cai, Yunlong ;
Cui, Fangyu ;
Shi, Qingjiang ;
Zhao, Minjian ;
Li, Geoffrey Ye .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (09) :1972-1985
[2]   A Survey on Multiple-Antenna Techniques for Physical Layer Security [J].
Chen, Xiaoming ;
Ng, Derrick Wing Kwan ;
Gerstacker, Wolfgang H. ;
Chen, Hsiao-Hwa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (02) :1027-1053
[3]  
Fujimoto S, 2018, PR MACH LEARN RES, V80
[4]   Learning-Based Robust and Secure Transmission for Reconfigurable Intelligent Surface Aided Millimeter Wave UAV Communications [J].
Guo, Xufeng ;
Chen, Yuanbin ;
Wang, Ying .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) :1795-1799
[5]   Secure Relay and Jammer Selection for Physical Layer Security [J].
Hui, Hui ;
Swindlehurst, A. Lee ;
Li, Guobing ;
Liang, Junli .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (08) :1147-1151
[6]  
Lee J, 2022, J COMMUN NETW-S KOR, V24, P125
[7]   Secrecy Energy-Efficient UAV Communication via Trajectory Design and Power Control [J].
Li, An ;
Han, Huohuo ;
Yu, Chuanxin .
WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
[8]   Mobile Jammer-Aided Secure UAV Communications via Trajectory Design and Power Control [J].
Li, An ;
Zhang, Wenjing .
CHINA COMMUNICATIONS, 2018, 15 (08) :141-151
[9]  
Li HP, 2018, IEEE INT CONF COMM
[10]  
Lillicrap T.P., 2015, P INT C LEARN REPR I, DOI [10.48550/arxiv.1509.02971, DOI 10.48550/ARXIV.1509.02971]