Limits of Detection for EXAFS Characterization of Heterogeneous Single-Atom Catalysts

被引:86
|
作者
Finzel, Jordan [2 ]
Gutierrez, Kenzie M. Sanroman [2 ]
Hoffman, Adam S. [2 ]
Resasco, Joaquin [3 ]
Christopher, Phillip [1 ]
Bare, Simon R. [2 ]
机构
[1] Univ Calif, Dept Chem Engn, Santa Barbara, CA 93117 USA
[2] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[3] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
single-atom catalysts; extended X-ray absorption fine structure; EXAFS; characterization; rigor and reproducibility; CAUCHY WAVELET TRANSFORM; METAL-CATALYSTS; SITE CATALYSTS; CO OXIDATION; SPECTROSCOPY; NANOCLUSTERS; ACTIVATION; EVOLUTION; ZEOLITES; CARBON;
D O I
10.1021/acscatal.3c01116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs), consisting of individual metal atoms dispersed on a support, attract attention due to their unique reactivity, efficient use of precious metals, and precise chemical tunability. Character-ization of the metal species is crucial to substantiate structure-function relationships. Authors often use -and referees often require -X-ray absorption spectroscopy (XAS) data to prove the absence of clustered metal (or metal oxide) structures after pre-treatment and under in situ or operando conditions. However, there has been no critical assessment of the limitations of XAS in substantiating such conclusive statements, which is particularly important given the potential outsized influence of minority catalyst structures in dictating catalytic activity. In this article, we quantitatively assess the detection limits of XAS to identify metal (or metal oxide) clusters in samples containing predominantly single atoms by modeling the extended X-ray absorption fine structure (EXAFS) of mixtures of structures. We identified that a significant fraction of clusters can coexist with SAC active sites (e.g., similar to 10% metallic Pt or similar to 40% oxidized Pt clusters in Pt/CeO2 SACs), while eluding detection via EXAFS with any statistical significance. To generalize these conclusions, a descriptor -based screening of bulk metal oxides using a continuous Cauchy wavelet transform was proposed that suggests certain materials for which differentiating atomically dispersed metal species and metal oxide clusters would be infeasible by EXAFS (e.g., ReOx). Based on this analysis, we suggest best practices for the study of SACs using EXAFS and provide recommendations to ensure that conclusions do not outpace the evidence used to support them. In this rapidly expanding research area, rigorous characterization will lead to greater understanding of the behavior of SACs and ultimately improved catalytic materials.
引用
收藏
页码:6462 / 6473
页数:12
相关论文
共 50 条
  • [41] Structural Regulation and Support Coupling Effect of Single-Atom Catalysts for Heterogeneous Catalysis
    Liu, Daobin
    He, Qun
    Ding, Shiqing
    Song, Li
    ADVANCED ENERGY MATERIALS, 2020, 10 (32)
  • [42] Droplet-Based Microfluidics Platform for the Synthesis of Single-Atom Heterogeneous Catalysts
    Moragues, Thomas
    Mitchell, Sharon
    Akl, Dario Faust
    Perez-Ramirez, Javier
    deMello, Andrew
    SMALL STRUCTURES, 2023, 4 (04):
  • [43] Introduction: Heterogeneous Single-Atom Catalysis
    Li, Jun
    Stephanopoulos, Maria Flytzani
    Xia, Younan
    CHEMICAL REVIEWS, 2020, 120 (21) : 11699 - 11702
  • [44] Magnesium single-atom catalysts with superbasicity
    Xiang-Bin Shao
    Yao Nian
    Song-Song Peng
    Guo-Song Zhang
    Meng-Xuan Gu
    You Han
    Xiao-Qin Liu
    Lin-Bing Sun
    Science China(Chemistry), 2023, (06) : 1737 - 1743
  • [45] Single-Atom Catalysts for Photocatalytic Reactions
    Wang, Qiushi
    Zhang, Dafeng
    Chen, Yong
    Fu, Wen-Fu
    Lv, Xiao-Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) : 6430 - 6443
  • [46] Single-Atom Catalysts Boosted Electrochemiluminescence
    Wang, Dan-Ling
    Zhao, Wei
    CHEMPLUSCHEM, 2025,
  • [47] Magnesium single-atom catalysts with superbasicity
    XiangBin Shao
    Yao Nian
    SongSong Peng
    GuoSong Zhang
    MengXuan Gu
    You Han
    XiaoQin Liu
    LinBing Sun
    Science China(Chemistry), 2023, 66 (06) : 1737 - 1743
  • [48] Stability of single-atom catalysts for electrocatalysis
    Hu, Hao
    Wang, Jiale
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    Wu, Jianbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5835 - 5849
  • [49] Single-Atom Catalysts in Catalytic Biomedicine
    Xiang, Huijing
    Feng, Wei
    Chen, Yu
    ADVANCED MATERIALS, 2020, 32 (08)
  • [50] Structural evolution of single-atom catalysts
    Zhang, Leilei
    Yang, Ji
    Yang, Xiaofeng
    Wang, Aiqin
    Zhang, Tao
    CHEM CATALYSIS, 2023, 3 (03):