Multi-dimensional features based data-driven state of charge estimation method for LiFePO4 batteries
被引:22
作者:
Liu, Mengmeng
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Liu, Mengmeng
[1
,2
]
Xu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xu, Jun
[1
,2
]
Jiang, Yihui
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Jiang, Yihui
[1
,2
]
Mei, Xuesong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Mei, Xuesong
[1
,2
]
机构:
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R China
Multi-dimensional features;
State of charge estimation;
LFP batteries;
Force;
Long short-term memory neural network;
LITHIUM-ION BATTERIES;
OF-CHARGE;
CAPACITY FADE;
MODEL;
STRESS;
HEALTH;
FORCE;
MANAGEMENT;
NETWORKS;
MACHINE;
D O I:
10.1016/j.energy.2023.127407
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
The flat open-circuit voltage (OCV) curve of LiFePO4 (LFP) batteries poses a significant challenge to state of charge (SOC) estimation. To solve this problem, this paper proposes a data-driven SOC estimation method based on multi-dimensional features, especially incorporating force signals. The significant force variation at the middle SOC region section compensates for the flat OCV problem. A long short-term memory (LSTM) neural network model is established to estimate SOC. Battery voltage, current, temperature, and force data sampled only in 5 s are taken as input. The proposed method is validated under different dynamic testing profiles and different temperatures. Experimental results indicate that this method can highly improve SOC estimation accuracy in the middle SOC region, with less than 0.5% root mean square errors and less than 2.5% maximum errors. The validation results at different temperatures also maintain high accuracy with the same model, showing strong robustness and excellent generalization performance. Additionally, the model training process of this method only takes 1.5 h, and the online estimation time is less than 1 s, considerably reducing time cost.
机构:
Yokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Torai, Soichiro
Nakagomi, Masaru
论文数: 0引用数: 0
h-index: 0
机构:
Yokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Nakagomi, Masaru
Yoshitake, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Yokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Yoshitake, Satoshi
Yamaguchi, Shuichiro
论文数: 0引用数: 0
h-index: 0
机构:
EnNet Co Ltd, Tokyo Metropolitan Ind Technol Res Inst, Lab 305, Koto Ku, 2-4-10 Aomi, Tokyo, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Yamaguchi, Shuichiro
Oyama, Noboru
论文数: 0引用数: 0
h-index: 0
机构:
EnNet Co Ltd, Tokyo Metropolitan Ind Technol Res Inst, Lab 305, Koto Ku, 2-4-10 Aomi, Tokyo, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
机构:
Yokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Torai, Soichiro
Nakagomi, Masaru
论文数: 0引用数: 0
h-index: 0
机构:
Yokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Nakagomi, Masaru
Yoshitake, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Yokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Yoshitake, Satoshi
Yamaguchi, Shuichiro
论文数: 0引用数: 0
h-index: 0
机构:
EnNet Co Ltd, Tokyo Metropolitan Ind Technol Res Inst, Lab 305, Koto Ku, 2-4-10 Aomi, Tokyo, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan
Yamaguchi, Shuichiro
Oyama, Noboru
论文数: 0引用数: 0
h-index: 0
机构:
EnNet Co Ltd, Tokyo Metropolitan Ind Technol Res Inst, Lab 305, Koto Ku, 2-4-10 Aomi, Tokyo, JapanYokogawa Elect Corp, 2-9-32 Naka Cho, Musashino, Tokyo 180, Japan