The Log Product Formula in Quantum K-theory

被引:3
作者
Chou, You-Cheng [1 ]
Herr, Leo
Lee, Yuan-Pin [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
关键词
SINGULARITIES; SPACE; COHOMOLOGY;
D O I
10.1017/S0305004123000063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties V x W in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.
引用
收藏
页码:225 / 252
页数:28
相关论文
共 50 条
  • [21] The completion problem for equivariant K-theory
    Krishna, Amalendu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 740 : 275 - 317
  • [22] ON THE K-THEORY OF TORIC STACK BUNDLES
    Jiang, Yunfeng
    Tseng, Hsian-Hua
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2010, 14 (01) : 1 - 10
  • [23] Higher K-theory of toric stacks
    Joshua, Roy
    Krishna, Amalendu
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (04) : 1189 - 1229
  • [24] Equivariant K-theory of toric orbifolds
    Sarkar, Soumen
    Uma, Vikraman
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (03) : 735 - 752
  • [25] K-theory of stratified vector bundles
    Baues, HJ
    Ferrario, DL
    [J]. K-THEORY, 2003, 28 (03): : 259 - 284
  • [26] K-THEORY OF CONES OF SMOOTH VARIETIES
    Cortinas, G.
    Haesemeyer, C.
    Walker, M. E.
    Weibel, C.
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2013, 22 (01) : 13 - 34
  • [27] K-theory of regular compactification bundles
    Uma, V
    [J]. MATHEMATISCHE NACHRICHTEN, 2022, 295 (05) : 1013 - 1034
  • [28] K-theory of flag Bott manifolds
    Paul, Bidhan
    Uma, Vikraman
    [J]. FORUM MATHEMATICUM, 2024, 36 (03) : 621 - 639
  • [29] MORAVA K-THEORY AND FILTRATIONS BY POWERS
    Barthel, Tobias
    Pstragowski, Piotr
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023,
  • [30] Combinatorics of the K-theory of affine Grassmannians
    Morse, Jennifer
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (05) : 2950 - 2984