The Log Product Formula in Quantum K-theory

被引:3
|
作者
Chou, You-Cheng [1 ]
Herr, Leo
Lee, Yuan-Pin [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
关键词
SINGULARITIES; SPACE; COHOMOLOGY;
D O I
10.1017/S0305004123000063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties V x W in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.
引用
收藏
页码:225 / 252
页数:28
相关论文
共 50 条
  • [1] The product formula in unitary deformation K-theory
    Lawson, Tyler
    K-THEORY, 2006, 37 (04): : 395 - 422
  • [2] K-theory of log-schemes II: Log-syntomic K-theory
    Niziol, Wieslawa
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1646 - 1672
  • [3] A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties
    Buch, Anders S.
    Chaput, Pierre-Emmanuel
    Mihalcea, Leonardo C.
    Perrin, Nicolas
    ALGEBRAIC GEOMETRY, 2018, 5 (05): : 568 - 595
  • [4] Degree formula for connective K-theory
    Zainoulline, K.
    INVENTIONES MATHEMATICAE, 2010, 179 (03) : 507 - 522
  • [5] Degree formula for connective K-theory
    K. Zainoulline
    Inventiones mathematicae, 2010, 179 : 507 - 522
  • [6] The Leibniz formula in algebraic K-theory
    Smirnov A.L.
    Journal of Mathematical Sciences, 2006, 134 (6) : 2582 - 2597
  • [7] A chevalley formula in equivariant K-theory
    Willems, Matthieu
    JOURNAL OF ALGEBRA, 2007, 308 (02) : 764 - 779
  • [8] K-theory of log-schemes I
    Niziol, Wieslawa
    DOCUMENTA MATHEMATICA, 2008, 13 : 505 - 551
  • [9] On the Quantum K-Theory of the Quintic
    Garoufalidis, Stavros
    Scheidegger, Emanuel
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [10] Quantum K-theory and integrability
    Koroteev, Peter
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (33):