A poly(ether block amide) based solid polymer electrolyte for solid-state lithium metal batteries

被引:7
作者
Liu, Changlin [1 ]
He, Yang [1 ]
An, Xiaowei [3 ]
Kitiphatpiboon, Nutthaphak [1 ]
Du, Xiao [4 ]
Hao, Xiaogang [4 ]
Abudula, Abuliti [1 ]
Guan, Guoqing [1 ,2 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, 1 Bunkyocho, Hirosaki 0368560, Japan
[2] Hirosaki Univ, Inst Reg Innovat IRI, Energy Convers Engn Lab, 3 Bunkyocho, Hirosaki 0368561, Japan
[3] Taiyuan Univ Technol, Coll Environm Sci & Engn, Taiyuan 030024, Peoples R China
[4] Taiyuan Univ Technol, Dept Chem Engn, Taiyuan 030024, Peoples R China
关键词
Solid-state polymer electrolyte; PEBA; 2533; Lithium metal batteries; Lithium dendrite; Solid -electrolyte interphase; TRANSPORT-PROPERTIES; OXIDE) ELECTROLYTES; LONG-LIFE; CONDUCTIVITY; SAFE; ELECTRODEPOSITION; ENHANCEMENT; MECHANISMS; CHALLENGES; MEMBRANES;
D O I
10.1016/j.jcis.2022.10.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium (Li) metal batteries (SSLMBs) with high-energy density and high-security are promis-ing for energy storage application and electronic device development. However, Li dendrite generation is still one of the most important factors hindering the application of SSLMBs since interface contact degra-dation, dead Li accumulation, and continuous solid-electrolyte interphase (SEI) growth are always caused by Li dendrite growth, making the performances of SSLMBs deteriorate rapidly. In this study, a poly(ether block amide) (PEBA) based polymer electrolyte with lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI) as the Li salt is developed. It is found that the PEBA 2533-20% LiTFSI electrolyte possesses an ion conduc-tivity of 3.0 x 10-5 S cm -1 at 25 degrees C. Especially, the Li dendrite suppression ability of SEI is greatly enhanced since it provides abundant amide groups to activate TFSI- anions and further enriches lithium fluoride (LiF) content in the SEI layer, which endows the full-cell with enhanced cyclability. As a result, the fabricated solid-state Li/PEBA 2533-20% LiTFSI/LiFePO4 (areal capacity: 0.15 mAh cm -2) battery remains 94% of its maximum capacity (127.5 mAh g-1) at a rate of 0.5C and 60 degrees C after 200 cycles. In par-ticular, the full cell can cycle for almost 1000 times without short circuit. Therefore, the PEBA based elec-trolyte could promote the LiF enriched SEI layer into a platform to suppress the growth of Li dendrite toward SSLMBs with a long-life span.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:595 / 603
页数:9
相关论文
共 67 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte [J].
Arof, A. K. ;
Aziz, M. F. ;
Noor, M. M. ;
Careem, M. A. ;
Bandara, L. R. A. K. ;
Thotawatthage, C. A. ;
Rupasinghe, W. N. S. ;
Dissanayake, M. A. K. L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (06) :2929-2935
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   Effect of Yield Stress on Stability of Block Copolymer Electrolytes against Lithium Metal Electrodes [J].
Chakraborty, Saheli ;
Sethi, Gurmukh K. ;
Frenck, Louise ;
Ho, Alec S. ;
Villaluenga, Irune ;
Wantanabe, Hiroshi ;
Balsara, Nitash P. .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (01) :852-861
[5]   Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries [J].
Chen, Fei ;
Yang, Dunjie ;
Zha, Wenping ;
Zhu, Bodi ;
Zhang, Yanhua ;
Li, Junyang ;
Gu, Yuping ;
Shen, Qiang ;
Zhang, Lianmeng ;
Sadoway, Donald R. .
ELECTROCHIMICA ACTA, 2017, 258 :1106-1114
[6]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[7]   Increasing the conductivity of crystalline polymer electrolytes [J].
Christie, AM ;
Lilley, SJ ;
Staunton, E ;
Andreev, YG ;
Bruce, PG .
NATURE, 2005, 433 (7021) :50-53
[8]   Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes [J].
Croce, F ;
Persi, L ;
Scrosati, B ;
Serraino-Fiory, F ;
Plichta, E ;
Hendrickson, MA .
ELECTROCHIMICA ACTA, 2001, 46 (16) :2457-2461
[9]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[10]  
Gao ZH, 2018, ADV MATER, V30, DOI [10.1002/adma.201870122, 10.1002/adma.201705702]