Bayesian nonparametric analysis for the detection of spikes in noisy calcium imaging data

被引:5
作者
D'Angelo, Laura [1 ,4 ]
Canale, Antonio [2 ]
Yu, Zhaoxia [3 ]
Guindani, Michele [3 ]
机构
[1] Univ Milano Bicocca, Dept Econ Management & Stat, Milan, Italy
[2] Univ Padua, Dept Stat Sci, Padua, Italy
[3] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[4] Univ Milano Bicocca, Dept Econ Management & Stat, I-20126 Milan, Italy
关键词
Dirichlet process; mixture of finite mixtures; model-based clustering; nested Dirichlet process; spike and slab; TRAIN INFERENCE; CIRCUIT; CELLS;
D O I
10.1111/biom.13626
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advancements in miniaturized fluorescence microscopy have made it possible to investigate neuronal responses to external stimuli in awake behaving animals through the analysis of intracellular calcium signals. An ongoing challenge is deconvolving the temporal signals to extract the spike trains from the noisy calcium signals' time series. In this article, we propose a nested Bayesian finite mixture specification that allows the estimation of spiking activity and, simultaneously, reconstructing the distributions of the calcium transient spikes' amplitudes under different experimental conditions. The proposed model leverages two nested layers of random discrete mixture priors to borrow information between experiments and discover similarities in the distributional patterns of neuronal responses to different stimuli. Furthermore, the spikes' intensity values are also clustered within and between experimental conditions to determine the existence of common (recurring) response amplitudes. Simulation studies and the analysis of a dataset from the Allen Brain Observatory show the effectiveness of the method in clustering and detecting neuronal activities.
引用
收藏
页码:1370 / 1382
页数:13
相关论文
共 46 条
[1]  
Allen Brain Observatory, 2017, Technical whitepaper: stimulus set and response analyses
[2]  
Allen Institute MindScope Program, 2016, Allen brain observatory-2-photon visual coding
[3]  
[Anonymous], 2016, Advances in Neural Information Processing Systems
[4]  
Argiento R, 2019, Arxiv, DOI arXiv:1904.09733
[5]   Statistical properties of spike trains: Universal and stimulus-dependent aspects [J].
Brenner, N ;
Agam, O ;
Bialek, W ;
van Steveninck, RD .
PHYSICAL REVIEW E, 2002, 66 (03)
[6]   Latent Nested Nonparametric Priors (with Discussion) [J].
Camerlenghi, Federico ;
Dunson, David B. ;
Lijoi, Antonio ;
Prunster, Igor ;
Rodriguez, Abel .
BAYESIAN ANALYSIS, 2019, 14 (04) :1303-1356
[7]   On the Pitman-Yor process with spike and slab base measure [J].
Canale, A. ;
Lijoi, A. ;
Nipoti, B. ;
Prunster, I. .
BIOMETRIKA, 2017, 104 (03) :681-697
[8]   Inner spike and slab Bayesian nonparametric models [J].
Canale, Antonio ;
Lijoi, Antonio ;
Nipoti, Bernardo ;
Prunster, Igor .
ECONOMETRICS AND STATISTICS, 2023, 27 :120-135
[9]   THE GIBBS-PLAID BICLUSTERING MODEL [J].
Chekouo, Thierry ;
Murua, Alejandro ;
Raffelsberger, Wolfgang .
ANNALS OF APPLIED STATISTICS, 2015, 9 (03) :1643-1670
[10]   High-performance calcium sensors for imaging activity in neuronal populations and microcompartments [J].
Dana, Hod ;
Sun, Yi ;
Mohar, Boaz ;
Hulse, Brad K. ;
Kerlin, Aaron M. ;
Hasseman, Jeremy P. ;
Tsegaye, Getahun ;
Tsang, Arthur ;
Wong, Allan ;
Patel, Ronak ;
Macklin, John J. ;
Chen, Yang ;
Konnerth, Arthur ;
Jayaraman, Vivek ;
Looger, Loren L. ;
Schreiter, Eric R. ;
Svoboda, Karel ;
Kim, Douglas S. .
NATURE METHODS, 2019, 16 (07) :649-+