The Random Normal Matrix Model: Insertion of a Point Charge

被引:24
作者
Ameur, Yacin [1 ]
Kang, Nam-Gyu [2 ]
Seo, Seong-Mi [2 ]
机构
[1] Lund Univ, Dept Math, Fac Sci, POB 118, S-22100 Lund, Sweden
[2] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Planar Coulomb gas; Microscopic limit; Conical singularity; Fock-Sobolev space; Ward's equation; EIGENVALUES; POLYNOMIALS; LIMIT;
D O I
10.1007/s11118-021-09942-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study microscopic properties of a two-dimensional Coulomb gas ensemble near a conical singularity arising from insertion of a point charge in the bulk of the droplet. In the determinantal case, we characterize all rotationally symmetric scaling limits ("Mittag-Leffler fields") and obtain universality of them when the underlying potential is algebraic. Applications include a central limit theorem for log vertical bar p(n)(zeta)vertical bar where p(n) is the characteristic polynomial of an n:th order random normal matrix.
引用
收藏
页码:331 / 372
页数:42
相关论文
共 42 条
[1]   The High Temperature Crossover for General 2D Coulomb Gases [J].
Akemann, Gernot ;
Byun, Sung-Soo .
JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (06) :1043-1065
[2]   MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES [J].
Ameur, Yacin ;
Seo, Seong-Mi .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01) :397-420
[3]   Scaling limits of random normal matrix processes at singular boundary points [J].
Ameur, Yacin ;
Kang, Nam-Gyu ;
Makarov, Nikolai ;
Wennman, Aron .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
[4]   Rescaling Ward Identities in the Random Normal Matrix Model [J].
Ameur, Yacin ;
Kang, Nam-Gyu ;
Makarov, Nikolai .
CONSTRUCTIVE APPROXIMATION, 2019, 50 (01) :63-127
[5]   On Bulk Singularities in the Random Normal Matrix Model [J].
Ameur, Yacin ;
Seo, Seong-Mi .
CONSTRUCTIVE APPROXIMATION, 2018, 47 (01) :3-37
[6]   RANDOM NORMAL MATRICES AND WARD IDENTITIES [J].
Ameur, Yacin ;
Hedenmalm, Haakan ;
Makarov, Nikolai .
ANNALS OF PROBABILITY, 2015, 43 (03) :1157-1201
[7]   On a problem for Ward's equation with a Mittag-Leffler potential [J].
Ameur, Yacin ;
Kang, Nam-Gyu .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07) :968-975
[8]   Near-Boundary Asymptotics for Correlation Kernels [J].
Ameur, Yacin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (01) :73-95
[9]   FLUCTUATIONS OF EIGENVALUES OF RANDOM NORMAL MATRICES [J].
Ameur, Yacin ;
Hedenmalm, Hakan ;
Makarov, Nikolai .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) :31-81
[10]  
[Anonymous], 1997, Logarithmic Potentials with External Fields