Machine learning for data-driven design of high-safety lithium metal anode

被引:1
|
作者
Zhang, Qi [1 ]
Dong, Junlin [2 ]
Zhou, Chuan [3 ]
Zhang, Dantong [1 ]
Yuan, Shuguang [2 ]
Kramer, Denis [4 ,5 ]
Xue, Dongfeng [1 ]
Peng, Chao [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Multiscale Crystal Mat Res Ctr, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[4] Univ Southampton, Engn Sci, Southampton SO17 1BJ, England
[5] Univ Armed Forces, Helmut Schmidt Univ, D-22043 Hamburg, Germany
来源
STAR PROTOCOLS | 2024年 / 5卷 / 01期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Chemistry; Energy; High Throughput Screening; Material sciences;
D O I
10.1016/j.xpro.2023.102834
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present a protocol for developing an inorganic -organic hybrid interphase layer using the self -assembled monolayers technique to enhance the surface of the lithium metal anode. We describe steps for extracting organic molecules from open -sourced databases and calculating their microscopic properties. We then detail procedures for developing a machine learning model for predicting the ionic diffusion barrier and preparing the inputs for prediction. This protocol enables a cost-effective workflow to identify promising self -assembled monolayers with exceptional performance. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2023).1
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Data-driven electrolyte design for lithium metal anodes
    Kim, Sang Cheol
    Oyakhire, Solomon T.
    Athanitis, Constantine
    Wang, Jingyang
    Zhang, Zewen
    Zhang, Wenbo
    Boyle, David T.
    Kim, Mun Sek
    Yu, Zhiao
    Gao, Xin
    Sogade, Tomi
    Wu, Esther
    Qin, Jian
    Bao, Zhenan
    Bent, Stacey F.
    Cui, Yi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (10)
  • [2] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Kai Yuan
    Yu Lin
    Xiang Li
    Yufeng Ding
    Peng Yu
    Jian Peng
    Jiazhao Wang
    Hua Kun Liu
    Shixue Dou
    Energy & Environmental Materials, 2024, 7 (05) : 5 - 23
  • [3] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Yuan, Kai
    Lin, Yu
    Li, Xiang
    Ding, Yufeng
    Yu, Peng
    Peng, Jian
    Wang, Jiazhao
    Liu, Huakun
    Dou, Shixue
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
  • [4] Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode
    Zhang, Qi
    Zhou, Chuan
    Zhang, Dantong
    Kramer, Denis
    Peng, Chao
    Xue, Dongfeng
    MATTER, 2023, 6 (09) : 2950 - 2962
  • [5] Data-driven design of high bulk modulus high entropy alloys using machine learning
    Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Indore
    453552, India
    不详
    16419, Korea, Republic of
    不详
    452010, India
    J. Alloy. Metall. Syst., 2024,
  • [6] NJmat: Data-Driven Machine Learning Interface to Accelerate Material Design
    Huang, Yiru
    Zhang, Lei
    Deng, Hangyuan
    Mao, Junfei
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (16) : 6477 - 6491
  • [7] BIKED: A DATASET AND MACHINE LEARNING BENCHMARKS FOR DATA-DRIVEN BICYCLE DESIGN
    Regenwetter, Lyle
    Curry, Brent
    Ahmed, Faez
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 3A, 2021,
  • [8] Data-driven decarbonization framework with machine learning
    Jain, Ayush
    Padmanaban, Manikandan
    Hazra, Jagabondhu
    Guruprasad, Ranjini
    Godbole, Shantanu
    Syam, Heriansyah
    ENVIRONMENTAL DATA SCIENCE, 2024, 3
  • [9] DATA-DRIVEN FREEFORM MEMS ENERGY HARVESTER DESIGN ENABLED BY MACHINE LEARNING
    Li, Kunying
    Guo, Ruiqi
    Sui, Fanping
    Lin, Liwei
    2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 458 - 461
  • [10] In situ-polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries
    Zhang, Shenghang
    Sun, Fu
    Du, Xiaofan
    Zhang, Xiaohu
    Huang, Lang
    Ma, Jun
    Dong, Shanmu
    Hilger, Andre
    Manke, Ingo
    Li, Longshan
    Xie, Bin
    Li, Jiedong
    Hu, Zhiwei
    Komarek, Alexander C.
    Lin, Hong-Ji
    Kuo, Chang-Yang
    Chen, Chien-Te
    Han, Pengxian
    Xu, Gaojie
    Cui, Zili
    Cui, Guanglei
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (06) : 2591 - 2602