Critical metrics of the volume functional with pinched curvature

被引:0
|
作者
Baltazar, H. [1 ]
Queiroz, C. [1 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
关键词
COMPACT MANIFOLDS; SCALAR CURVATURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that a critical metric of the volume functional with pinched Weyl curvature is isometric to a geodesic ball in Sn. Moreover, we provide a necessary and sufficient condition on the norm of the gradient of the potential function in order to classify such critical metrics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Volume growth, curvature decay, and critical metrics
    Tian, Gang
    Viaclovsky, Jeff
    COMMENTARII MATHEMATICI HELVETICI, 2008, 83 (04) : 889 - 911
  • [2] On the critical metrics of the total scalar curvature functional
    Barros, Abdenago
    Evangelista, Israel
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 147 - 158
  • [3] Critical Metrics and Curvature of Metrics with Unit Volume or Unit Area of the Boundary
    Tiarlos Cruz
    Almir Silva Santos
    The Journal of Geometric Analysis, 2023, 33
  • [4] Critical Metrics and Curvature of Metrics with Unit Volume or Unit Area of the Boundary
    Cruz, Tiarlos
    Santos, Almir Silva
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (01)
  • [5] Rigidity for critical metrics of the volume functional
    Barros, A.
    da Silva, A.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) : 709 - 719
  • [6] On conformally flat critical Riemannian metrics for a curvature functional
    Katagiri, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (02) : 27 - 29
  • [7] Geometric inequalities for critical metrics of the volume functional
    H. Baltazar
    R. Batista
    E. Ribeiro
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 1463 - 1480
  • [8] Geometric inequalities for critical metrics of the volume functional
    Baltazar, H.
    Batista, R.
    Ribeiro, E., Jr.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1463 - 1480
  • [9] CRITICAL METRICS OF THE VOLUME FUNCTIONAL ON MANIFOLDS WITH BOUNDARY
    Baltazar, H.
    Ribeiro, E., Jr.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) : 3513 - 3523
  • [10] Characterization of Pinched Ricci Curvature by Functional Inequalities
    Cheng, Li-Juan
    Thalmaier, Anton
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (03) : 2312 - 2345