Magnetic Nanoparticles with Fe-N and Fe-C Cores and Carbon Shells Synthesized at High Pressures

被引:2
作者
Bagramov, Rustem H. [1 ]
Filonenko, Vladimir P. [1 ]
Zibrov, Igor P. [1 ]
Skryleva, Elena A. [2 ]
Kulnitskiy, Boris A. [3 ]
Blank, Vladimir D. [3 ]
Khabashesku, Valery N. [4 ]
机构
[1] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Moscow 108840, Russia
[2] Natl Univ Sci & Technol MISiS, Dept Mat Sci Semicond & Dielect, Moscow 119049, Russia
[3] Technol Inst Superhard & Novel Carbon Mat, Moscow 108840, Russia
[4] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
关键词
iron carbide; iron nitride; carbon core-shell; nanoparticles; high-pressure synthesis; IRON CARBIDE NANOPARTICLES; TEMPERATURE; NITRIDES; FERROCENE; CATALYST; NITROGEN; STATE;
D O I
10.3390/ma16227063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoparticles of iron carbides and nitrides enclosed in graphite shells were obtained at 2 divided by 8 GPa pressures and temperatures of around 800 degrees C from ferrocene and ferrocene-melamine mixture. The average core-shell particle size was below 60 nm. The graphite-like shells over the iron nitride cores were built of concentric graphene layers packed in a rhombohedral shape. It was found that at a pressure of 4 GPa and temperature of 800 degrees C, the stability of the nanoscale phases increases in a Fe7C3 > Fe3C > Fe3N1+x sequence and at 8 GPa in a Fe3C > Fe7C3 > Fe3N1+x sequence. At pressures of 2 divided by 8 GPa and temperatures up to 1600 degrees C, iron nitride Fe3N1+x is more stable than iron carbides. At 8 GPa and 1600 degrees C, the average particle size of iron nitride increased to 0.5 divided by 1 mu m, while simultaneously formed free carbon particles had the shape of graphite discs with a size of 1 divided by 2 mu m. Structural refinement of the iron nitride using the Rietveld method gave the best result for the space group P6(3)22. The refined composition of the samples obtained from a mixture of ferrocene and melamine at 8 GPa/800 degrees C corresponded to Fe3N1.208, and at 8 GPa/1650 degrees C to Fe3N1.259. The iron nitride core-shell nanoparticles exhibited magnetic behavior. Specific magnetization at 7.5 kOe of pure Fe3N1.208 was estimated to be 70 emu/g. Compared to other methods, the high-pressure method allows easy synthesis of the iron nitride cores inside pure carbon shells and control of the particle size. And in general, pressure is a good tool for modifying the phase and chemical composition of the iron-containing cores.
引用
收藏
页数:13
相关论文
共 45 条
  • [1] A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth's core
    Adler, JF
    Williams, Q
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2005, 110 (B1) : 1 - 11
  • [2] Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition
    Agaogullari, Duygu
    Madsen, Steven J.
    Ogut, Burcu
    Koh, Ai Leen
    Sinclair, Robert
    [J]. CARBON, 2017, 124 : 170 - 179
  • [3] Magnetically active nanocomposite aerogels: preparation, characterization and application for water treatment
    Ali, Imran
    Neskoromnaya, E. A.
    Melezhik, A., V
    Babkin, A., V
    Kulnitskiy, B. A.
    Burakov, A. E.
    Burakova, I., V
    Tkachev, A. G.
    Almalki, Abdulraheem S. A.
    Alsubaie, Abdullah
    [J]. JOURNAL OF POROUS MATERIALS, 2022, 29 (02) : 545 - 557
  • [4] Magnetocontrollability of Fe7C3@C superparamagnetic nanoparticles in living cells
    Alieva, Irina B.
    Kireev, Igor
    Garanina, Anastasia S.
    Alyabyeva, Natalia
    Ruyter, Antoine
    Strelkova, Olga S.
    Zhironkina, Oxana A.
    Cherepaninets, Varvara D.
    Majouga, Alexander G.
    Davydov, Valery A.
    Khabashesku, Valery N.
    Agafonov, Viatcheslav
    Uzbekov, Rustem E.
    [J]. JOURNAL OF NANOBIOTECHNOLOGY, 2016, 14
  • [5] Low intensity sonosynthesis of iron carbide@iron oxide core-shell nanoparticles
    Arguelles-Pesqueira, A., I
    Dieguez-Armenta, N. M.
    Bobadilla-Valencia, A. K.
    Nataraj, S. K.
    Rosas-Durazo, A.
    Esquivel, R.
    Alvarez-Ramos, M. E.
    Escudero, Roberto
    Guerrero-German, P.
    Lucero-Acuna, J. A.
    Zavala-Rivera, P.
    [J]. ULTRASONICS SONOCHEMISTRY, 2018, 49 : 303 - 309
  • [6] TRANSMISSION ELECTRON-MICROSCOPIC STUDY OF SINGLE-CRYSTALS OF FE7C3
    AUDIER, M
    BOWEN, P
    JONES, W
    [J]. JOURNAL OF CRYSTAL GROWTH, 1983, 63 (01) : 125 - 134
  • [7] High Pressures Synthesis of Iron Carbide Nanoparticles Covered with Onion-Like Carbon Shells
    Bagramov, R. H.
    Blank, V. D.
    Serebryanaya, N. R.
    Dubitsky, G. A.
    Tatyanin, E. V.
    Aksenenkov, V. V.
    [J]. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2012, 20 (01) : 41 - 48
  • [8] Mechanism of Transformation of Ferrocene into Carbon-Encapsulated Iron Carbide Nanoparticles at High Pressures and Temperatures
    Baskakov, Arseniy O.
    Lyubutin, Igor S.
    Starchikov, Sergey S.
    Davydov, Valery A.
    Kulikova, Ludmila F.
    Egorova, Tolganay B.
    Agafonov, Vyacheslav N.
    [J]. INORGANIC CHEMISTRY, 2018, 57 (23) : 14895 - 14903
  • [9] A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction
    Bezerra, Cicero W. B.
    Zhang, Lei
    Lee, Kunchan
    Liu, Hansan
    Marques, Aldalea L. B.
    Marques, Edmar P.
    Wang, Haijiang
    Zhang, Jiujun
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (15) : 4937 - 4951
  • [10] Electron microscopy and electron energy loss spectroscopy studies of carbon fiber formation at Fe catalysts
    Blank, VD
    Kulnitskiy, BA
    Batov, DV
    Bangert, U
    Gutiérrez-Sosa, A
    Harvey, AJ
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (03) : 1657 - 1660