4D hyperspectral surface topography measurement system based on the Scheimpflug principle and hyperspectral imaging

被引:2
作者
Chen, Xiang [1 ,2 ]
Huang, Xuhui [1 ]
He, Sailing [1 ,2 ]
机构
[1] Zhejiang Univ, Zhejiang Prov Key Lab Sensing Technol, Natl Engn Res Ctr Opt Instruments, Ctr Opt & Electromagnet Res,Coll Opt Sci & Engn, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Shanghai Inst Adv Study, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
POINT CLOUD SEGMENTATION; LIDAR SYSTEM; IMAGER; RESOLUTION;
D O I
10.1364/AO.501459
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A four-dimensional (4D) hyperspectral surface topography measurement (HSTM) system that can acquire uniform inelastic signals [three-dimensional (3D) spatial data] and reflection/fluorescence spectra of an object is proposed. The key components of the system are a light-sheet profilometer based on the Scheimpflug principle and a hyperspectral imager. Based on the mapping relationships among the image coordinate systems of the two imag-ing subsystems and the coordinate system of the real space, the spectral data can be assigned to the corresponding 3D point cloud, forming a 4D model. The spectral resolution is better than 4 nm. 700 nm, 546 nm, and 436 nm are selected as the three primary colors of red, green, and blue to restore the color. The 4D hyperspectral surface reconstruction experiments of philodendron and chlorophytum have shown the good performance of the proposed HSTM system and the great application potential for plant phenotype and growth analysis in agriculture. (c) 2023 Optica Publishing Group
引用
收藏
页码:8855 / 8868
页数:14
相关论文
共 46 条
[1]   Line laser scanning microscopy based on the Scheimpflug principle for high-resolution topography restoration and quantitative measurement [J].
Bian, Qiuwan ;
Chen, Xiang ;
He, Sailing .
APPLIED OPTICS, 2023, 62 (18) :5014-5022
[2]   Hyperspectral lidar point cloud segmentation based on geometric and spectral information [J].
Chen, Biwu ;
Shi, Shuo ;
Sun, Jia ;
Gong, Wei ;
Yang, Jian ;
Du, Lin ;
Guo, Kuanghui ;
Wang, Binhui ;
Chen, Bowen .
OPTICS EXPRESS, 2019, 27 (17) :24043-24059
[3]   Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry [J].
Chen, Kun ;
Gao, Fei ;
Chen, Xiang ;
Huang, Qiangsheng ;
He, Sailing .
APPLIED OPTICS, 2019, 58 (27) :7643-7648
[4]   Inelastic hyperspectral Scheimpflug lidar for microalgae classification and quantification [J].
Chen, Xiang ;
Jiang, Yiming ;
Yao, Quankai ;
Ji, Jiali ;
Evans, Julian ;
He, Sailing .
APPLIED OPTICS, 2021, 60 (16) :4778-4786
[5]   Wavelength calibration method for a CCD detector and multichannel fiber-optic probes [J].
Cho, JH ;
Gemperline, PJ ;
Walker, D .
APPLIED SPECTROSCOPY, 1995, 49 (12) :1841-1845
[6]   Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity [J].
Choi, Jong-Kuk ;
Park, Young Je ;
Lee, Bo Ram ;
Eom, Jinah ;
Moon, Jeong-Eon ;
Ryu, Joo-Hyung .
REMOTE SENSING OF ENVIRONMENT, 2014, 146 :24-35
[7]   Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR [J].
Du, Lin ;
Gong, Wei ;
Shi, Shuo ;
Yang, Pan ;
Sun, Jia ;
Zhu, Bo ;
Song, Shalei .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 44 :136-143
[8]   Underwater spatially, spectrally, and temporally resolved optical monitoring of aquatic fauna [J].
Duan, Z. ;
Yuan, Y. ;
Lu, J. C. ;
Wang, J. L. ;
Li, Y. ;
Svanberg, S. ;
Zhao, G. Y. .
OPTICS EXPRESS, 2020, 28 (02) :2600-2610
[9]   3D compressive spectral integral imaging [J].
Feng, Weiyi ;
Rueda, Hoover ;
Fu, Chen ;
Arce, Gonzalo R. ;
He, Weiji ;
Chen, Qian .
OPTICS EXPRESS, 2016, 24 (22) :24859-24871
[10]   Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots [J].
Fu, Guoqiang ;
Menciassi, Arianna ;
Dario, Paolo .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2012, 60 (10) :1317-1326