Ultra-low frequency active vibration isolation in high precision equipment with electromagnetic suspension: Analysis and experiment

被引:11
作者
Xie, Xiling [1 ,2 ]
He, Peitao [1 ,2 ]
Wu, Di [1 ,2 ]
Zhang, Zhiyi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Vibrat Shock & Noise, Shanghai 200240, Peoples R China
来源
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY | 2023年 / 84卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Active vibration isolation; Electromagnetic suspension; Negative stiffness; Ultra-low frequency; EULER BUCKLED BEAM; NEGATIVE STIFFNESS; DESIGN; SYSTEM; NOISE;
D O I
10.1016/j.precisioneng.2023.07.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High performance vibration isolation requirement in the ultra-low frequency band for high precision equipment becomes more and more stringent. An active vibration isolation method is investigated to broaden the frequency band of isolation and improve the performance, in which an electromagnetic suspension is adopted to provide a static lifting force and an active control force. Naturally, the suspension is accompanied by a controllable negative stiffness. Two factors that might cause instability of the suspension system, i.e., the bias current and the base disturbance, are analyzed to give the stable region. The matching relationship between the currents in the upper and lower coils, and the mapping rules among the current, relative displacement, force and stiffness are discussed, respectively. The maximum base disturbance that the system can withstand is analyzed. On the basis of the theoretical analysis, the active position stabilization and vibration control methods are built and the performance is evaluated. Furthermore, experiments were conducted to verify the effectiveness of the active vibration isolation method. Numerical and experimental results demonstrate that the electromagnetic suspension is able to improve the vibration isolation performance in the ultra-low frequency range, where the transmissibility is below 0 dB in the entire frequency band and the initial vibration isolation frequency is less than 1Hz.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 35 条
  • [11] On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector
    Liu, Xingtian
    Huang, Xiuchang
    Hua, Hongxing
    [J]. JOURNAL OF SOUND AND VIBRATION, 2013, 332 (14) : 3359 - 3376
  • [12] Ultra-low frequency active vertical vibration isolation system
    Luo, J
    Wu, CZ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (11): : 1216 - 1221
  • [13] Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview
    Matichard, F.
    Lantz, B.
    Mason, K.
    Mittleman, R.
    Abbott, B.
    Abbott, S.
    Allwine, E.
    Barnum, S.
    Birch, J.
    Biscans, S.
    Clark, D.
    Coyne, D.
    DeBra, D.
    DeRosa, R.
    Foley, S.
    Fritschel, P.
    Giaime, J. A.
    Gray, C.
    Grabeel, G.
    Hanson, J.
    Hillard, M.
    Kissel, J.
    Kucharczyk, C.
    Le Roux, A.
    Lhuillier, V.
    Macinnis, M.
    O'Reilly, B.
    Ottaway, D.
    Paris, H.
    Puma, M.
    Radkins, H.
    Ramet, C.
    Robinson, M.
    Ruet, L.
    Sareen, P.
    Shoemaker, D.
    Stein, A.
    Thomas, J.
    Vargas, M.
    Warner, J.
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2015, 40 : 273 - 286
  • [14] Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 2: Experimental investigation and tests results
    Matichard, F.
    Lantz, B.
    Mason, K.
    Mittleman, R.
    Abbott, B.
    Abbott, S.
    Allwine, E.
    Barnum, S.
    Birch, J.
    Biscans, S.
    Clark, D.
    Coyne, D.
    DeBra, D.
    DeRosa, R.
    Foley, S.
    Fritschel, P.
    Giaime, J. A.
    Gray, C.
    Grabeel, G.
    Hanson, J.
    Hillard, M.
    Kissel, J.
    Kucharczyk, C.
    Le Roux, A.
    Lhuillier, V.
    Macinnis, M.
    O'Reilly, B.
    Ottaway, D.
    Paris, H.
    Puma, M.
    Radkins, H.
    Ramet, C.
    Robinson, M.
    Ruet, L.
    Sareen, P.
    Shoemaker, D.
    Stein, A.
    Thomas, J.
    Vargas, M.
    Warner, J.
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2015, 40 : 287 - 297
  • [15] Molyneux W. G., 1957, Tech. Rep. ARC/CP-322
  • [16] An ultra-low-noise, low-frequency, six degrees of freedom active vibration isolator
    Newell, DB
    Richman, SJ
    Nelson, PG
    Stebbins, RT
    Bender, PL
    Faller, JE
    Mason, J
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (08) : 3211 - 3219
  • [17] A Two-Stage Synchronous Vibration Control for Magnetically Suspended Rotor System in Full Speed Range
    Peng, Cong
    Zhu, Mengting
    Wang, Kun
    Ren, Yuan
    Deng, Zhiquan
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (01) : 480 - 489
  • [18] Multi-layer electromagnetic spring with tunable negative stiffness for semi-active vibration isolation
    Pu, Huayan
    Yuan, Shujin
    Peng, Yan
    Meng, Kai
    Zhao, Jinglei
    Xie, Rongqing
    Huang, Yining
    Sun, Yi
    Yang, Yang
    Xie, Shaorong
    Luo, Jun
    Chen, Xuedong
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 121 : 942 - 960
  • [19] SCHWARZ G, 1909, MUENCHNER MED WOCHEN, P1
  • [20] T Sato, 2002, P 8 INT S MAGN BEAR, V26-28, P193