Progress in single-cell multimodal sequencing and multi-omics data integration

被引:11
作者
Wang, Xuefei [1 ]
Wu, Xinchao [1 ]
Hong, Ni [1 ]
Jin, Wenfei [1 ]
机构
[1] Southern Univ Sci & Technol, Sch Life Sci, Shenzhen Key Lab Gene Regulat & Syst Biol, Shenzhen, Peoples R China
关键词
Single-cell sequencing; Single-cell multimodal omics; Multi-omics; Data integration; Multi-omics data integration; EARLY EMBRYOS; RNA; SEQ; PROTEINS; GENOME; EXPRESSION; HETEROGENEITY; LANDSCAPES; EVOLUTION; CHROMATIN;
D O I
10.1007/s12551-023-01092-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
With the rapid advance of single-cell sequencing technology, cell heterogeneity in various biological processes was dissected at different omics levels. However, single-cell mono-omics results in fragmentation of information and could not provide complete cell states. In the past several years, a variety of single-cell multimodal omics technologies have been developed to jointly profile multiple molecular modalities, including genome, transcriptome, epigenome, and proteome, from the same single cell. With the availability of single-cell multimodal omics data, we can simultaneously investigate the effects of genomic mutation or epigenetic modification on transcription and translation, and reveal the potential mechanisms underlying disease pathogenesis. Driven by the massive single-cell omics data, the integration method of single-cell multi-omics data has rapidly developed. Integration of the massive multi-omics single-cell data in public databases in the future will make it possible to construct a cell atlas of multi-omics, enabling us to comprehensively understand cell state and gene regulation at single-cell resolution. In this review, we summarized the experimental methods for single-cell multimodal omics data and computational methods for multi-omics data integration. We also discussed the future development of this field.
引用
收藏
页码:13 / 28
页数:16
相关论文
共 100 条
[1]   SCPortalen: human and mouse single-cell centric database [J].
Abugessaisa, Imad ;
Noguchi, Shuhei ;
Bottcher, Michael ;
Hasegawa, Akira ;
Kouno, Tsukasa ;
Kato, Sachi ;
Tada, Yuhki ;
Ura, Hiroki ;
Abe, Kuniya ;
Shin, Jay W. ;
Plessy, Charles ;
Carninci, Piero ;
Kasukawa, Takeya .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D781-D787
[2]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[3]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[4]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[5]  
Ashuach T., 2021, bioRxiv, V2021, p2020.457057, DOI DOI 10.1101/2021.08.20.457057
[6]   Comparative cellular analysis of motor cortex in human, marmoset and mouse [J].
Bakken, Trygve E. ;
Jorstad, Nikolas L. ;
Hu, Qiwen ;
Lake, Blue B. ;
Tian, Wei ;
Kalmbach, Brian E. ;
Crow, Megan ;
Hodge, Rebecca D. ;
Krienen, Fenna M. ;
Sorensen, Staci A. ;
Eggermont, Jeroen ;
Yao, Zizhen ;
Aevermann, Brian D. ;
Aldridge, Andrew I. ;
Bartlett, Anna ;
Bertagnolli, Darren ;
Casper, Tamara ;
Castanon, Rosa G. ;
Crichton, Kirsten ;
Daigle, Tanya L. ;
Dalley, Rachel ;
Dee, Nick ;
Dembrow, Nikolai ;
Diep, Dinh ;
Ding, Song-Lin ;
Dong, Weixiu ;
Fang, Rongxin ;
Fischer, Stephan ;
Goldman, Melissa ;
Goldy, Jeff ;
Graybuck, Lucas T. ;
Herb, Brian R. ;
Hou, Xiaomeng ;
Kancherla, Jayaram ;
Kroll, Matthew ;
Lathia, Kanan ;
van Lew, Baldur ;
Li, Yang Eric ;
Liu, Christine S. ;
Liu, Hanqing ;
Lucero, Jacinta D. ;
Mahurkar, Anup ;
McMillen, Delissa ;
Miller, Jeremy A. ;
Moussa, Marmar ;
Nery, Joseph R. ;
Nicovich, Philip R. ;
Niu, Sheng-Yong ;
Orvis, Joshua ;
Osteen, Julia K. .
NATURE, 2021, 598 (7879) :111-+
[7]   Image-based transcriptomics in thousands of single human cells at single-molecule resolution [J].
Battich, Nico ;
Stoeger, Thomas ;
Pelkmans, Lucas .
NATURE METHODS, 2013, 10 (11) :1127-1133
[8]   Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram [J].
Biancalani, Tommaso ;
Scalia, Gabriele ;
Buffoni, Lorenzo ;
Avasthi, Raghav ;
Lu, Ziqing ;
Sanger, Aman ;
Tokcan, Neriman ;
Vanderburg, Charles R. ;
Segerstolpe, Asa ;
Zhang, Meng ;
Avraham-Davidi, Inbal ;
Vickovic, Sanja ;
Nitzan, Mor ;
Ma, Sai ;
Subramanian, Ayshwarya ;
Lipinski, Michal ;
Buenrostro, Jason ;
Brown, Nik Bear ;
Fanelli, Duccio ;
Zhuang, Xiaowei ;
Macosko, Evan Z. ;
Regev, Aviv .
NATURE METHODS, 2021, 18 (11) :1352-+
[9]   Single-cell chromatin accessibility reveals principles of regulatory variation [J].
Buenostro, Jason D. ;
Wu, Beijing ;
Litzenburger, Ulrike M. ;
Ruff, Dave ;
Gonzales, Michael L. ;
Snyder, Michael P. ;
Chang, Howard Y. ;
Greenleaf, William J. .
NATURE, 2015, 523 (7561) :486-U264
[10]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+