Boosting Performance of a Protonic Ceramic Fuel Cell by the Incorporation of Active Nano-Structured Layers

被引:16
作者
Jing, Junmeng [1 ]
Lei, Ze [1 ]
Wang, Chaoyu [1 ]
Zheng, Ziwei [1 ]
Wang, Haoran [1 ]
Zhang, Panpan [1 ]
Yang, Zhibin [1 ]
Peng, Suping [1 ]
机构
[1] China Univ Min & Technol Beijing, Res Ctr Solid Oxide Fuel Cell, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
nano-structured active layer; proton-conducting electrolyte; protonic ceramic fuel cell; triple-phase boundary; NH3; fuel; electrochemical performance; OXIDE; CATHODE; AMMONIA; PEROVSKITE; ELECTRODE; ANODE;
D O I
10.1021/acssuschemeng.3c00706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A powerful strategy to expandthe triple-phase boundaryand enhance the PCFC performance with the nano-structured active layer Protonic ceramic fuel cells (PCFCs) are a promising optionforefficient energy-conversion devices, which are hindered by sluggishcathodic kinetics. Here, a Ba0.95La0.05Fe0.8Zn0.2O3-& delta; (BLFZ)-infiltratedBaCe(0.7)Zr(0.1)Y(0.1)Yb(0.1)O(3-& delta;) (BCZYYb) nano-structured active layer (NAL)between the porous cathode and the dense electrolyte is designed,which can provide a powerful strategy to expand the triple-phase boundaries,allowing excellent electrochemical performance for PCFC with NH3 and H-2 fuel. BLFZ nanoparticles are homogeneouslydistributed in a porous BCZYYb scaffold, as confirmed by SEM imagesand EDS mappings. The reduction of & SIM;59% in polarization resistancefor symmetrical cells at 600 & DEG;C is achieved. The electrochemicalreaction processes are revealed by the electrochemical impedance spectraand the distribution of relaxation time analysis. Compared to theBLFZ-BCZYYb composite cathode, the single cell with the NAL showsan over 1.3-fold and 1.5-fold increase in peak power density, 601and 486 mW cm(-2) at 650 & DEG;C with H-2 and NH3 fuel, respectively. The enhancement of cell performanceis attributed to the coupling of proton conduction and electrocatalyticactivity of the NAL, which expand the proton-accessible cathode areaat the cathode/electrolyte interface. No obvious degradation is achievedfor the PCFC measured at 600 & DEG;C with H-2 and NH3 fuel.
引用
收藏
页码:10303 / 10310
页数:8
相关论文
共 33 条
[1]   Functionality of the Cathode-Electrolyte Interlayer in Protonic Solid Oxide Fuel Cells [J].
Akimoto, Katsuya ;
Wang, Ning ;
Tang, Chunmei ;
Shuto, Kai ;
Jeong, SeongWoo ;
Kitano, Sho ;
Habazaki, Hiroki ;
Aoki, Yoshitaka .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) :12227-12238
[2]   High-Efficiency Direct Ammonia Fuel Cells Based on BaZr0.1Ce0.7Y0.2O3-δ/Pd Oxide-Metal Junctions [J].
Aoki, Yoshitaka ;
Yamaguchi, Tomoyuki ;
Kobayashi, Shohei ;
Kowalski, Damian ;
Zhu, Chunyu ;
Habazaki, Hiroki .
GLOBAL CHALLENGES, 2018, 2 (01)
[3]   Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400 °C [J].
Bian, Wenjuan ;
Wu, Wei ;
Gao, Yipeng ;
Gomez, Joshua Y. ;
Ding, Hanping ;
Tang, Wei ;
Zhou, Meng ;
Ding, Dong .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (33)
[4]   A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells [J].
Chen, Junyu ;
Li, Jin ;
Jia, Lichao ;
Moussa, Ibrahim ;
Chi, Bo ;
Pu, Jian ;
Li, Jian .
JOURNAL OF POWER SOURCES, 2019, 428 :13-19
[5]   A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction [J].
Chen, Yu ;
Choi, YongMan ;
Yoo, Seonyoung ;
Ding, Yong ;
Yan, Ruiqiang ;
Pei, Kai ;
Qu, Chong ;
Zhang, Lei ;
Chang, Ikwhang ;
Zhao, Bote ;
Zhang, Yanxiang ;
Chen, Huijun ;
Chen, Yan ;
Yang, Chenghao ;
deGlee, Ben ;
Murphy, Ryan ;
Liu, Jiang ;
Liu, Meilin .
JOULE, 2018, 2 (05) :938-949
[6]   Development of intertwined nanostructured multi-phase air electrodes for efficient and durable reversible solid oxide cells [J].
Chen, Zhiyi ;
Jiang, Lizhen ;
He, Shuai ;
Guan, Chengzhi ;
Zou, Yuanfeng ;
Yue, Zhongwei ;
Ai, Na ;
Jiang, San Ping ;
Shao, Yanqun ;
Chen, Kongfa .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 305
[7]   Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells [J].
Choi, Sihyuk ;
Kucharczyk, Chris J. ;
Liang, Yangang ;
Zhang, Xiaohang ;
Takeuchi, Ichiro ;
Ji, Ho-Il ;
Haile, Sossina M. .
NATURE ENERGY, 2018, 3 (03) :202-210
[8]   Tailoring SOFC Electrode Microstructures for Improved Performance [J].
Connor, Paul A. ;
Yue, Xiangling ;
Savaniu, Cristian D. ;
Price, Robert ;
Triantafyllou, Georgios ;
Cassidy, Mark ;
Kerherve, Gwilherm ;
Payne, David J. ;
Maher, Robert C. ;
Cohen, Lesley F. ;
Tomov, Rumen I. ;
Glowacki, Bartek A. ;
Kumar, Ramachandran Vasant ;
Irvine, John T. S. .
ADVANCED ENERGY MATERIALS, 2018, 8 (23)
[9]   Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3-δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells [J].
Duan, Nanqi ;
Yang, Jiajun ;
Gao, Minrui ;
Zhang, Bowen ;
Luo, Jing-Li ;
Du, Yanhai ;
Xu, Minghou ;
Jia, Lichao ;
Chi, Bo ;
Li, Jian .
NANO ENERGY, 2020, 77
[10]   Pr-Doping Motivating the Phase Transformation of the BaFeO3-δ Perovskite as a High-Performance Solid Oxide Fuel Cell Cathode [J].
Gou, Yunjie ;
Li, Guangdong ;
Ren, Rongzheng ;
Xu, Chunming ;
Qiao, Jinshuo ;
Sun, Wang ;
Sun, Kening ;
Wang, Zhenhua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) :20174-20184