Multidimensional Pruning and Its Extension: A Unified Framework for Model Compression

被引:9
作者
Guo, Jinyang [1 ]
Xu, Dong [2 ]
Ouyang, Wanli [3 ]
机构
[1] Beihang Univ, Inst Artificial Intelligence, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] Shanghai AI Lab, Shanghai 200232, Peoples R China
基金
中国国家自然科学基金;
关键词
Channel pruning; deep learning; model compression; point cloud neural networks (PCNNs);
D O I
10.1109/TNNLS.2023.3266435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Observing that the existing model compression approaches only focus on reducing the redundancies in convolutional neural networks (CNNs) along one particular dimension (e.g., the channel or spatial or temporal dimension), in this work, we propose our multidimensional pruning (MDP) framework, which can compress both 2-D CNNs and 3-D CNNs along multiple dimensions in an end-to-end fashion. Specifically, MDP indicates the simultaneous reduction of channels and more redundancy on other additional dimensions. The redundancy of additional dimensions depends on the input data, i.e., spatial dimension for 2-D CNNs when using images as the input data, and spatial and temporal dimensions for 3-D CNNs when using videos as the input data. We further extend our MDP framework to the MDP-Point approach for compressing point cloud neural networks (PCNNs) whose inputs are irregular point clouds (e.g., PointNet). In this case, the redundancy along the additional dimension indicates the point dimension (i.e., the number of points). Comprehensive experiments on six benchmark datasets demonstrate the effectiveness of our MDP framework and its extended version MDP-Point for compressing CNNs and PCNNs, respectively.
引用
收藏
页码:13056 / 13070
页数:15
相关论文
共 88 条
[71]   ELASTIC: Improving CNNs with Dynamic Scaling Policies [J].
Wang, Huiyu ;
Kembhavi, Aniruddha ;
Farhadi, Ali ;
Yuille, Alan ;
Rastegari, Mohammad .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2253-2262
[72]   Temporal Segment Networks: Towards Good Practices for Deep Action Recognition [J].
Wang, Limin ;
Xiong, Yuanjun ;
Wang, Zhe ;
Qiao, Yu ;
Lin, Dahua ;
Tang, Xiaoou ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 :20-36
[73]   Non-local Neural Networks [J].
Wang, Xiaolong ;
Girshick, Ross ;
Gupta, Abhinav ;
He, Kaiming .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7794-7803
[74]   Dynamic Graph CNN for Learning on Point Clouds [J].
Wang, Yue ;
Sun, Yongbin ;
Liu, Ziwei ;
Sarma, Sanjay E. ;
Bronstein, Michael M. ;
Solomon, Justin M. .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (05)
[75]   FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search [J].
Wu, Bichen ;
Dai, Xiaoliang ;
Zhang, Peizhao ;
Wang, Yanghan ;
Sun, Fei ;
Wu, Yiming ;
Tian, Yuandong ;
Vajda, Peter ;
Jia, Yangqing ;
Keutzer, Kurt .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10726-10734
[76]   PointConv: Deep Convolutional Networks on 3D Point Clouds [J].
Wu, Wenxuan ;
Qi, Zhongang ;
Li Fuxin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9613-9622
[77]  
Wu ZR, 2015, PROC CVPR IEEE, P1912, DOI 10.1109/CVPR.2015.7298801
[78]   Learning Feature Pyramids for Human Pose Estimation [J].
Yang, Wei ;
Li, Shuang ;
Ouyang, Wanli ;
Li, Hongsheng ;
Wang, Xiaogang .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1290-1299
[79]   A Scalable Active Framework for Region Annotation in 3D Shape Collections [J].
Yi, Li ;
Kim, Vladimir G. ;
Ceylan, Duygu ;
Shen, I-Chao ;
Yan, Mengyan ;
Su, Hao ;
Lu, Cewu ;
Huang, Qixing ;
Sheffer, Alla ;
Guibas, Leonidas .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06)
[80]   PU-Net: Point Cloud Upsampling Network [J].
Yu, Lequan ;
Li, Xianzhi ;
Fu, Chi-Wing ;
Cohen-Or, Daniel ;
Heng, Pheng-Ann .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2790-2799