The effect of the barrier thickness on DC and RF performances of AlGaN/GaN HEMTs on silicon

被引:1
作者
Wang, Chun [1 ]
Hsu, Heng-Tung [2 ]
Lin, Jui-Lung [2 ]
Weng, You-Chen [3 ]
Tsao, Yi-Fan [2 ]
Wang, Yuan [2 ]
Chang, Edward Yi [1 ,2 ,4 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Coll Photon, Tainan 71150, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
关键词
barrier thickness; GaN HEMT; AlGaN; dispersive effect; small signal; large signal; Si substrate; ELECTRON-MOBILITY TRANSISTORS; SMALL-SIGNAL; GAN HEMTS; ALD AL2O3; 40; GHZ; POWER; TECHNOLOGY; SI; F(T)/F(MAX); PASSIVATION;
D O I
10.1088/1361-6641/acd13c
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the effect of barrier thickness on the DC and RF performances of AlGaN/GaN high-electron mobility transistors (HEMTs) on silicon for millimeter wave applications is experimentally investigated. GaN HEMT devices with different barrier thicknesses were fabricated and characterized. While the device with the thinnest barrier exhibited the highest extrinsic transconductance (g(m)) resulting from the shortest gate-to-channel distance, such configuration suffered from the lowest unit current-gain cut-off frequency (f(T)) due to the increase of the total gate capacitance. Moreover, degradation in the output power was observed for devices with thinner barriers. Such degradation was related to the severe knee walkout as evidenced from drain-lag characterization.
引用
收藏
页数:8
相关论文
共 36 条
[1]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[2]   ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT [J].
Aubry, R. ;
Jacquet, J. C. ;
Oualli, M. ;
Patard, O. ;
Piotrowicz, S. ;
Chartier, E. ;
Michel, N. ;
Xuan, L. Trinh ;
Lancereau, D. ;
Potier, C. ;
Magis, M. ;
Gamarra, P. ;
Lacam, C. ;
Tordjman, M. ;
Jardel, O. ;
Dua, C. ;
Delage, S. L. .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) :629-632
[3]  
Christian de Looper J., 2014, DIGITAL TRENDS
[4]   InAlN/GaN HEMT on Si With fmax =270 GHz [J].
Cui, Peng ;
Jia, Meng ;
Chen, Hang ;
Lin, Guangyang ;
Zhang, Jie ;
Gundlach, Lars ;
Xiao, John Q. ;
Zeng, Yuping .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (03) :994-999
[5]   A survey of Gallium Nitride HEMT for RF and high power applications [J].
Fletcher, A. S. Augustine ;
Nirmal, D. .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 :519-537
[6]   AlGaN/GaN HEMTs on (001) Silicon Substrate With Power Density Performance of 2.9 W/mm at 10 GHz [J].
Gerbedoen, Jean-Claude ;
Soltani, Ali ;
Joblot, Sylvain ;
De Jaeger, Jean-Claude ;
Gaquiere, Christophe ;
Cordier, Yvon ;
Semond, Fabrice .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (07) :1497-1503
[7]   Dispersive Effects in Microwave AlGaN/AlN/GaN HEMTs With Carbon-Doped Buffer [J].
Gustafsson, Sebastian ;
Chen, Jr-Tai ;
Bergsten, Johan ;
Forsberg, Urban ;
Thorsell, Mattias ;
Janzen, Erik ;
Rorsman, Niklas .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (07) :2162-2169
[8]   A review of GaN HEMT broadband power amplifiers [J].
Hamza, K. Husna ;
Nirmal, D. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 116
[9]   High Performance and Highly Robust AlN/GaN HEMTs for Millimeter-Wave Operation [J].
Harrouche, Kathia ;
Kabouche, Riad ;
Okada, Etienne ;
Medjdoub, Farid .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) :1145-1150
[10]   Effects of Barrier Thinning on Small-Signal and 30-GHz Power Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistors [J].
Higashiwaki, Masataka ;
Pei, Yi ;
Chu, Rongming ;
Mishra, Umesh K. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (06) :1681-1686