Nonparametric adaptive estimation for interacting particle systems

被引:9
作者
Comte, Fabienne [1 ,2 ]
Genon-Catalot, Valentine [1 ]
机构
[1] Univ Paris Cite, Paris, France
[2] Univ Paris Cite, MAP5, UMR 8145, CNRS, F-75006 Paris, France
关键词
adaptive method; interacting particle systems; nonparametric inference; projection estimators; MODEL;
D O I
10.1111/sjos.12661
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a stochastic system of N interacting particles with constant diffusion coefficient and drift linear in space, time-depending on two unknown deterministic functions. Our concern here is the nonparametric estimation of these functions from a continuous observation of the process on [0, T] for fixed T and large N. We define two collections of projection estimators belonging to finite-dimensional subspaces of L-2([0, T]). We study the L-2-risks of these estimators, where the risk is defined either by the expectation of an empirical norm or by the expectation of a deterministic norm. Afterwards, we propose a data-driven choice of the dimensions and study the risk of the adaptive estimators. The results are illustrated by numerical experiments on simulated data.
引用
收藏
页码:1716 / 1755
页数:40
相关论文
共 30 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
Amorino C., 2022, PREPRINT
[3]   Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons [J].
Baladron, Javier ;
Fasoli, Diego ;
Faugeras, Olivier ;
Touboul, Jonathan .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2012, 2 (01) :1-50
[4]  
BARAUD Y, 2001, ESAIM-PROBAB STAT, V5, P33, DOI DOI 10.1051/PS:2001101
[5]   Semiparametric estimation of McKean-Vlasov SDEs [J].
Belomestny, Denis ;
Pilipauskaite, Vytaute ;
Podolskij, Mark .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01) :79-96
[6]   PROJECTED PARTICLE METHODS FOR SOLVING McKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS [J].
Belomestny, Denis ;
Schoenmakers, John .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) :3169-3195
[7]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[8]  
BRITTON T, 2020, STOCHASTIC EPIDEMIC, V2255
[9]  
Chen XW, 2021, EMPIR SOFTW ENG, V26, DOI [10.1214/21-ecp416, 10.1007/s10664-020-09904-w]
[10]   On the Stability and Accuracy of Least Squares Approximations [J].
Cohen, Albert ;
Davenport, Mark A. ;
Leviatan, Dany .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2013, 13 (05) :819-834