Network Intrusion Detection Model Using Fused Machine Learning Technique

被引:4
|
作者
Alotaibi, Fahad Mazaed [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol Rabigh FCITR, Jeddah, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 75卷 / 02期
关键词
Cyberattack; machine learning; prediction; solution; intrusion detection; SYSTEM;
D O I
10.32604/cmc.2023.033792
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the progress of advanced technology in the industrial rev-olution encompassing the Internet of Things (IoT) and cloud computing, cyberattacks have been increasing rapidly on a large scale. The rapid expansion of IoT and networks in many forms generates massive volumes of data, which are vulnerable to security risks. As a result, cyberattacks have become a prevalent and danger to society, including its infrastructures, economy, and citizens' privacy, and pose a national security risk worldwide. Therefore, cyber security has become an increasingly important issue across all levels and sectors. Continuous progress is being made in developing more sophisticated and efficient intrusion detection and defensive methods. As the scale of complexity of the cyber-universe is increasing, advanced machine learning methods are the most appropriate solutions for predicting cyber threats. In this study, a fused machine learning-based intelligent model is proposed to detect intrusion in the early stage and thus secure networks from harmful attacks. Simulation results confirm the effectiveness of the proposed intrusion detection model, with 0.909 accuracy and a miss rate of 0.091.
引用
收藏
页码:2479 / 2490
页数:12
相关论文
共 50 条
  • [21] Data Driven Network Monitoring and Intrusion Detection using Machine Learning
    Williams, Brandon
    Dong, Xishuang
    Qian, Lijun
    2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2020, : 262 - 268
  • [22] Outside the Closed World: On Using Machine Learning For Network Intrusion Detection
    Sommer, Robin
    Paxson, Vern
    2010 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, 2010, : 305 - 316
  • [23] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Ben Slimane, Jihane
    Abd-Elkawy, Eman H.
    Maqbool, Albia
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2140 - 2149
  • [24] Performance Analysis of Network Intrusion Detection System using Machine Learning
    Alsaeedi, Abdullah
    Khan, Mohammad Zubair
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 671 - 678
  • [25] Network intrusion detection system using an optimized machine learning algorithm
    Alabdulatif, Abdulatif
    Rizvi, Syed Sajjad Hussain
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (01) : 153 - 164
  • [26] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Rose, Joseph R.
    Swann, Matthew
    Bendiab, Gueltoum
    Shiaeles, Stavros
    Kolokotronis, Nicholas
    PROCEEDINGS OF THE 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2021): ACCELERATING NETWORK SOFTWARIZATION IN THE COGNITIVE AGE, 2021, : 409 - 415
  • [27] A novel machine learning model for perimeter intrusion detection using intrusion image dataset
    Pitafi, Shahneela
    Anwar, Toni
    Widia, I. Dewa Made
    Sharif, Zubair
    Yimwadsana, Boonsit
    PLOS ONE, 2024, 19 (12):
  • [28] HYBRID MACHINE LEARNING TECHNIQUE FOR INTRUSION DETECTION SYSTEM
    Tahir, Hatim Mohamad
    Hasan, Wael
    Said, Abas Md
    Zakaria, Nur Haryani
    Katuk, Norliza
    Kabir, Nur Farzana
    Omar, Mohd Hasbullah
    Ghazali, Osman
    Yahya, Noor Izzah
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COMPUTING & INFORMATICS, 2015, : 464 - 472
  • [29] Network Intrusion Detection in Software-Defined Network using Deep and Machine Learning
    Mhamdi, Lotfi
    Hamdi, Hedi
    Mahmood, Mahmood A.
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2692 - 2697
  • [30] Classification Model of Network Intrusion using Weighted Extreme Learning Machine
    Srimuang, Worachai
    Intarasothonchun, Silada
    PROCEEDINGS OF THE 2015 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2015, : 190 - 194