Low Mach number limit of nonisentropic inviscid Hookean elastodynamics

被引:0
作者
Ju, Qiangchang [1 ]
Wang, Jiawei [1 ,2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing, Peoples R China
关键词
elastodynamics; low Mach number limit; nonisentropic; INCOMPRESSIBLE LIMIT; GLOBAL EXISTENCE; SINGULAR LIMITS; EQUATIONS; DOMAIN;
D O I
10.1002/mma.9071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The low Mach number limit of the nonisentropic compressible Hookean elastodynamic equations is rigorously proved with respect to well-prepared initial data. We introduce certain suitable seminorms to obtain the uniform estimate of solutions, for which the critical point is to cancel the higher order derivate terms caused by the coupling of velocity and deformation gradient.
引用
收藏
页码:9508 / 9525
页数:18
相关论文
共 28 条
[1]  
[Anonymous], 1997, Lectures on nonlinear hyperbolic differential equations, Mathematiques et Applications
[2]  
[Anonymous], 1984, COMPRESSIBLE FLUID F
[3]   The interaction between quasilinear elastodynamics and the Navier-Stokes equations [J].
Coutand, D ;
Shkoller, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (03) :303-352
[4]  
Dafermos CM, 2010, GRUNDLEHR MATH WISS, V325, P325, DOI 10.1007/978-3-642-04048-1_10
[5]   GLOBAL-SOLUTIONS OF THE EQUATIONS OF ELASTODYNAMICS OF INCOMPRESSIBLE NEO-HOOKEAN MATERIALS [J].
EBIN, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (09) :3802-3805
[6]  
Gu X., 2020, LOCAL WELL POSEDNESS
[7]   Local strong solution to the compressible viscoelastic flow with large data [J].
Hu, Xianpeng ;
Wang, Dehua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1179-1198
[8]   INCOMPRESSIBLE LIMIT OF THE NONISENTROPIC IDEAL MAGNETOHYDRODYNAMIC EQUATIONS [J].
Jiang, Song ;
Ju, Qiangchang ;
Li, Fucai .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (01) :302-319
[9]  
JOHN F, 1984, LECT NOTES PHYS, V195, P194
[10]   Singular limits of the equations of compressible ideal magneto-hydrodynamics in a domain with boundaries [J].
Ju, Qiangchang ;
Schochet, Steve ;
Xu, Xin .
ASYMPTOTIC ANALYSIS, 2019, 113 (03) :137-165