AlexSegNet: an accurate nuclei segmentation deep learning model in microscopic images for diagnosis of cancer

被引:4
作者
Singha, Anu [1 ]
Bhowmik, Mrinal Kanti [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Comp Sci & Engn, Delhi NCR Campus, Ghaziabad 201204, Uttar Pradesh, India
[2] Tripura Univ, Dept Comp Sci & Engn, Suryamaninagar 799022, Agartala, India
关键词
Convolutional neural network; Nuclei; Segmentation; Fluorescent; Histopathology; cancer;
D O I
10.1007/s11042-022-14098-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The nuclei segmentation of microscopic images is a key pre-requisite for cancerous pathological image analysis. However, an accurate nuclei cell segmentation is a long running major challenge due to the enormous color variability of staining, nuclei shapes, sizes, and clustering of overlapping cells. To address this challenges, we proposed a deep learning model, namely, AlexSegNet which is based upon AlexNet model Encoder-Decoder framework. In Encoder part, it stitches feature maps in the channel dimension to achieve feature fusion and uses a skip structure in Decoder part to combine low- and high-level features to ensure the segmentation effect of the nucleus. At final stage, we have also introduced a stacked network where feature maps are stacks on top of each other. We have used a publically available 2018 Data Science Bowl and Triple Negative Breast Cancer (TNBC) datasets of microscopic nuclei images for this study which comprises of several sample types such as small and large fluorescent, pink, purple, and grayscale tissue samples. Experimental results show that our proposed AlexSegNet achieved a segmentation maximum performance of 91.66% for Data Science Bowl dataset and 66.88% for TNBC dataset. The results are competitive compared to the results of other state-of-the-art models. This model is expected to be useful clinically for technician experts to succeed the analysis of cancer diagnosis into the survival chances of patients.
引用
收藏
页码:20431 / 20452
页数:22
相关论文
共 50 条
  • [31] CELL NUCLEI DETECTION AND SEGMENTATION FOR COMPUTATIONAL PATHOLOGY USING DEEP LEARNING
    Chen, Kemeng
    Zhang, Ning
    Powers, Linda
    Roveda, Janet
    2019 SPRING SIMULATION CONFERENCE (SPRINGSIM), 2019,
  • [32] A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images
    Zakareya, Salman
    Izadkhah, Habib
    Karimpour, Jaber
    DIAGNOSTICS, 2023, 13 (11)
  • [33] Deep Learning as a Tool for Automatic Segmentation of Corneal Endothelium Images
    Nurzynska, Karolina
    SYMMETRY-BASEL, 2018, 10 (03):
  • [34] NUCLEI SEGMENTATION IN HISTOPATHOLOGY IMAGES USING DEEP NEURAL NETWORKS
    Naylor, Peter
    Lae, Marick
    Reyal, Fabien
    Walter, Thomas
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 933 - 936
  • [35] Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
    Naylor, Peter
    Lae, Marick
    Reyal, Fabien
    Walter, Thomas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 448 - 459
  • [36] Deep learning model with collage images for the segmentation of dedicated breast positron emission tomography images
    Imokawa, Tomoki
    Satoh, Yoko
    Fujioka, Tomoyuki
    Takahashi, Kanae
    Mori, Mio
    Kubota, Kazunori
    Onishi, Hiroshi
    Tateishi, Ukihide
    BREAST CANCER, 2023,
  • [37] Hybrid Deep Learning Model for Pancreatic Cancer Image Segmentation
    Bakasa, Wilson
    Kwenda, Clopas
    Viriri, Serestina
    ARTIFICIAL INTELLIGENCE IN PANCREATIC DISEASE DETECTION AND DIAGNOSIS, AND PERSONALIZED INCREMENTAL LEARNING IN MEDICINE, AIPAD 2024, PILM 2024, 2025, 15197 : 14 - 24
  • [38] An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
    Hwejin Jung
    Bilal Lodhi
    Jaewoo Kang
    BMC Biomedical Engineering, 1 (1):
  • [39] Mitotic Nuclei Segmentation and Classification Using Chaotic Butterfly Optimization Algorithm with Deep Learning on Histopathology Images
    AlGhamdi, Rayed
    BIOMIMETICS, 2023, 8 (06)
  • [40] An Efficient Deep Learning Model for Prostate Cancer Diagnosis
    Alici-Karaca, Demet
    Akay, Bahriye
    IEEE ACCESS, 2024, 12 : 150776 - 150792