Chebyshev polynomials and r-circulant matrices

被引:6
作者
Pucanovic, Zoran [1 ]
Pesovic, Marko [1 ]
机构
[1] Univ Belgrade, Fac Civil Engn, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia
关键词
Chebyshev polynomials; r-circulant matrix; Matrix norms; Integer sequences; FIBONACCI; NORMS;
D O I
10.1016/j.amc.2022.127521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper connects two attractive topics in applied mathematics, r-circulant matrices and the Chebyshev polynomials. The r-circulant matrices whose entries are the Chebyshev polynomials of the first or second kind are considered. Then, estimates for spectral norm bounds of such matrices are presented. The relevance of the obtained results was verified by applying them to some of the previous results on r-circulant matrices involving various integer sequences. The acquired results justify the usefulness of the applied approach.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 26 条
  • [1] HYPER-DUAL HORADAM QUATERNIONS
    Ait-Amrane, N. Rosa
    Gok, Ismail
    Tan, Elif
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 903 - 913
  • [2] A matrix approach to some second-order difference equations with sign-alternating coefficients
    Andelic, Milica
    Du, Zhibin
    da Fonseca, Carlos M.
    Kilic, Emrah
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (02) : 149 - 162
  • [3] Buschman R. G., 1963, Fibonacci Quart, V1, P1
  • [4] A Comprehensive Survey on Geometric Deep Learning
    Cao, Wenming
    Yan, Zhiyue
    He, Zhiquan
    He, Zhihai
    [J]. IEEE ACCESS, 2020, 8 : 35929 - 35949
  • [5] Chihara TS., 1978, INTRO ORTHOGONAL POL
  • [6] Unifying some Pell and Fibonacci identities
    da Fonseca, Carlos M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 41 - 42
  • [7] Davis P.J., 1979, CIRCULANT MATRICES
  • [8] SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
    Fey, Matthias
    Lenssen, Jan Eric
    Weichert, Frank
    Mueller, Heinrich
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 869 - 877
  • [9] Gray R.M., 1990, TOEPLITZ CIRCULANT M
  • [10] The upper bound estimation on the spectral norm of r-circulant matrices with the Fibonacci and Lucas numbers
    He, Chengyuan
    Ma, Jiangming
    Zhang, Kunpeng
    Wang, Zhenghua
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,