A Uniformly Convergent Numerical Algorithm on Harmonic (H(l)) Mesh for Parabolic Singularly Perturbed Convection-Diffusion Problems with Boundary Layer

被引:0
作者
Babu, Gajendra [1 ]
Prithvi, M. [2 ]
Sharma, Kapil K. [1 ]
Ramesh, V. P. [2 ]
机构
[1] South Asian Univ, Dept Math, New Delhi, India
[2] Cent Univ Tamil Nadu, Dept Math, Thiruvarur, India
关键词
Finite difference method; H(l) mesh; Singularly perturbed problem; Uniform convergence; Backward Euler scheme; FINITE-DIFFERENCE SCHEME; NONUNIFORM MESH; EQUATIONS; UPWIND;
D O I
10.1007/s12591-021-00585-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals the design and analysis of a parameter uniform finite difference algorithm for a class of parabolic singularly perturbed convection-diffusion problems. The discrete nearby problem is designed using the backward Euler scheme in time and upwind scheme on H(l) mesh in space. We present the convergence analysis of the algorithm, which proves that it is parameter uniform in L-infinity norm. The numerical experiments support the theoretical estimates and demonstrates the efficiency of H(l) mesh with the existing meshes, like Shishkin and Bakhvalov type meshes.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 22 条
[1]   A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) :415-429
[2]   An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (02) :263-280
[3]  
Farrell P., 2000, ROBUST COMPUTATIONAL, DOI DOI 10.1201/9781482285727
[4]  
Farrell P.A., 1991, P 13 IMACS WORLD C C, V91, P501
[5]   A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters [J].
Gupta, Vikas ;
Kadalbajoo, Mohan K. ;
Dubey, Ritesh K. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) :474-499
[6]   ε-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems [J].
Hemker, PW ;
Shishkin, GI ;
Shishkina, LP .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (01) :99-121
[7]   Singularly perturbed problems in partial differential equations: a survey [J].
Kadalbajoo, MK ;
Patidar, KC .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) :371-429
[8]   A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension [J].
Kadalbajoo, Mohan K. ;
Awasthi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (01) :42-60
[9]   The Midpoint Upwind Finite Difference Scheme for Time-Dependent Singularly Perturbed Convection-Diffusion Equations on Non-Uniform Mesh [J].
Kadalbajoo, Mohan K. ;
Awasthi, Ashish .
INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2011, 12 (03) :150-159
[10]   A brief survey on numerical methods for solving singularly perturbed problems [J].
Kadalbajoo, Mohan K. ;
Gupta, Vikas .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :3641-3716