Single-cell colocalization analysis using a deep generative model

被引:3
|
作者
Kojima, Yasuhiro [1 ,2 ,3 ]
Mii, Shinji [2 ,3 ,4 ]
Hayashi, Shuto [2 ,3 ]
Hirose, Haruka [2 ,3 ]
Ishikawa, Masato [6 ]
Akiyama, Masashi [5 ]
Enomoto, Atsushi [5 ]
Shimamura, Teppei [2 ,3 ,7 ]
机构
[1] Res Inst, Natl Canc Ctr, Lab Computat Life Sci, Chuo ku, Tokyo 1040045, Japan
[2] Tokyo Med & Dent Univ, Dept Computat & Syst Biol, Med Res Insitute, Bunkyo ku, Tokyo 1130034, Japan
[3] Nagoya Univ, Grad Sch Med, Div Syst Biol, Nagoya, Aichi 4668550, Japan
[4] Nagoya Univ, Grad Sch Med, Dept Pathol, Nagoya, Aichi 4668550, Japan
[5] Nagoya Univ, Grad Sch Med, Dept Dermatol, Nagoya, Aichi 4668550, Japan
[6] Kyoto Univ, Inst Life & Med Sci, Kyoto, Kyoto 6068507, Japan
[7] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Kashiwa, Chiba 2778561, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
SERUM-LEVELS; EXPRESSION; COMMUNICATION; CANCER; TARGET; CXCL9; RNA; SEQ;
D O I
10.1016/j.cels.2024.01.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell -cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single -cell resolution by the integration of single -cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell -cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARSCoV-2. DeepCOLOR is applicable to studying cell -cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:180 / 192.e7
页数:21
相关论文
共 50 条
  • [1] Single cell colocalization analysis using deep generative model
    Kojima, Yasuhiro
    CANCER SCIENCE, 2025, 116 : 645 - 645
  • [2] PeakVI: A deep generative model for single-cell chromatin accessibility analysis
    Ashuach, Tal
    Reidenbach, Daniel A.
    Gayoso, Adam
    Yosef, Nir
    CELL REPORTS METHODS, 2022, 2 (03):
  • [3] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [4] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928
  • [5] A deep generative model of 3D single-cell organization
    Donovan-Maiye, Rory M.
    Brown, Jackson M.
    Chan, Caleb K.
    Ding, Liya
    Yan, Calysta
    Gaudreault, Nathalie
    Theriot, Julie A.
    Maleckar, Mary M.
    Knijnenburg, Theo A.
    Johnson, Gregory R.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)
  • [6] Deep generative modeling for single-cell transcriptomics
    Romain Lopez
    Jeffrey Regier
    Michael B. Cole
    Michael I. Jordan
    Nir Yosef
    Nature Methods, 2018, 15 : 1053 - 1058
  • [7] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [8] Deep generative models in single-cell omics
    Rivero-Garcia I.
    Torres M.
    Sánchez-Cabo F.
    Computers in Biology and Medicine, 2024, 176
  • [9] Estimating colocalization-dependent cell state dynamics using a deep generative model
    Kojima, Yasuhiro
    CANCER SCIENCE, 2024, 115 : 1157 - 1157
  • [10] A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
    Minoura, Kodai
    Abe, Ko
    Nam, Hyunha
    Nishikawa, Hiroyoshi
    Shimamura, Teppei
    CELL REPORTS METHODS, 2021, 1 (05):