Challenges and Opportunities in Electrification of Adsorptive Separation Processes

被引:9
作者
Al Moinee, Abdullah [1 ]
Rownaghi, Ali A. [2 ]
Rezaei, Fateme [3 ]
机构
[1] Missouri Univ Sci & Technol, Linda & Bipin Doshi Dept Chem & Biochem Engn, Rolla, MO 65409 USA
[2] United States Dept Energy, Natl Energy Technol Lab NETL, Pittsburgh, PA 15236 USA
[3] Univ Miami, Dept Chem Environm & Mat Engn, Miami, FL 33124 USA
基金
美国国家科学基金会;
关键词
ELECTRIC SWING ADSORPTION; CARBON-DIOXIDE CAPTURE; METAL-ORGANIC FRAMEWORKS; CO2; CAPTURE; ACTIVATED CARBON; ELECTROTHERMAL DESORPTION; GAS SEPARATION; NATURAL-GAS; FIBER CLOTH; ADSORBENT;
D O I
10.1021/acsenergylett.3c02340
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A global energy transition from fossil-based to renewable-based systems requires advancements in various energy sectors. Current chemical separation processes are quite energy-intensive and require significant advancement to make this transition happen. In the energy transition era, reducing the dependency of separation processes on fossil-based thermal energy seems inevitable for transitioning smoothly and meeting the stringent timelines. In particular, adsorption-based separation processes have the potential to be fully electrified through innovative strategies in developing stimuli-responsive adsorbents and swing processes. In this review, we discuss the recent efforts in electrification of adsorption processes and provide an overview of emerging materials and processes. The challenges associated with electrified adsorption-based separations are discussed in detail, and opportunities to expedite the transition from traditional practices to advanced energy-efficient systems are provided in the end.
引用
收藏
页码:1228 / 1248
页数:21
相关论文
共 92 条
[11]   Energy Consumption of Air-Separation Adsorption Methods [J].
Banaszkiewicz, Tomasz ;
Chorowski, Maciej .
ENTROPY, 2018, 20 (04)
[12]   Enhancing the capacity of supercapacitive swing adsorption CO2 capture by tuning charging protocols [J].
Binford, Trevor B. ;
Mapstone, Grace ;
Temprano, Israel ;
Forse, Alexander C. .
NANOSCALE, 2022, 14 (22) :7980-7984
[13]  
Byrd C. M., 2003, AustraliaPatent, Patent No. [AU2001257038A1, 2001257038]
[14]   Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption [J].
Cavenati, Simone ;
Grande, Carlos A. ;
Rodrigues, Alirio E. .
ENERGY & FUELS, 2006, 20 (06) :2648-2659
[15]   Assessments of Energy Capacity and Energy Losses of Supercapacitors in Fast Charging-Discharging Cycles [J].
Cheng, Yonghua .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (01) :253-261
[16]   Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers [J].
Chien, An-Ting ;
Cho, Sangbeom ;
Joshi, Yogendra ;
Kumar, Satish .
POLYMER, 2014, 55 (26) :6896-6905
[17]  
Chronopoulos T., 2016, Microwave Swing Adsorption for post-combustion CO2 capture from flue gases using solid sorbents
[18]   Using Functional Nano- and Microparticles for the Preparation of Metal-Organic Framework Composites with Novel Properties [J].
Doherty, Cara M. ;
Buso, Dario ;
Hill, Anita J. ;
Furukawa, Shuhei ;
Kitagawa, Susumu ;
Falcaro, Paolo .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (02) :396-405
[19]   Positioning an individual metal-organic framework particle using a magnetic field [J].
Falcaro, Paolo ;
Lapierre, Florian ;
Marmiroli, Benedetta ;
Styles, Mark ;
Zhu, Yonggang ;
Takahashi, Masahide ;
Hill, Anita J. ;
Doherty, Cara M. .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (01) :42-45
[20]   CO2capture through electro-conductive adsorbent using physical adsorption system for sustainable development [J].
Farooq, M. ;
Saeed, M. A. ;
Imran, M. ;
Uddin, G. M. ;
Asim, M. ;
Bilal, H. ;
Younas, M. R. ;
Andresen, J. M. .
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2020, 42 (06) :1507-1515